Analyzing the synthesis route of 109-01-3

109-01-3 1-Methylpiperazine 53167, apiperazines compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.109-01-3,1-Methylpiperazine,as a common compound, the synthetic route is as follows.

A suspension of 2-chloro-/V-methyl-/V-(4-nitrophenyl)acetamide (1.0 g, 4.37 mmol) in ethyl acetate (10 mL) was heated to 40 C for 30 min and added l-methylpiperazine (1.2 mL, 10.9 mmol) at the same temperature. The mixture was stirred at 50 C for 2 h. The reaction mixture was cooled to RT and diluted with ethyl acetate. The solution was washed with water and dried over anhydrous sodium sulfate. The solution was filtered, concentrated and diluted with methanol. The solution was subjected to hydrogenation in the presence of palladium on carbon as catalyst under 25 bar of hydrogen pressure at 25 C for 2 h. The catalyst was removed by filtration and the solvent was evaporated at 60 C to yield 400 mg of the desired compound. 1 H NMR (400 MHz, DMSO-de) d 1.88 (s, 3H), 2.14-2.19 (m, 4H), 2.63-2.68 (m, 4H), 2.80 (s, 2H), 3.01 (s, 3H), 5.20 (br s, 2H), 6.53 (d, J= 8.1 Hz, 2H), 6.88 (d, J= 8.7 Hz, 2H)., 109-01-3

109-01-3 1-Methylpiperazine 53167, apiperazines compound, is more and more widely used in various fields.

Reference£º
Patent; ICHNOS SCIENCES S.A.; CHAUDHARI, Sachin, Sundarlal; GHARAT, Laxmikant, Atmaram; IYER, Pravin; DHONE, Sachin, Vasantrao; ADIK, Bharat, Gangadhar; WADEKAR, Prashant, Dilip; GOWDA, Nagaraj; BAJPAI, Malini; (233 pag.)WO2020/70331; (2020); A1;,
Piperazine – Wikipedia
Piperazines – an overview | ScienceDirect Topics