With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.109-07-9,2-Methylpiperazine,as a common compound, the synthetic route is as follows.
Example 15 A 2-liter four-neck flask with a thermometer, condenser and stirrer was charged with 200.4 g (= 2.00 moles) of racemic 2-methylpiperazine, 280.0 g of water and 96.0 g of methanol for perfect dissolution. Then, 300.4 g of 50 wt% D-tartaric acid aqueous solution (150.2 g = 1.000 mole of D-tartaric acid) was added at 40 to 45C, and the temperature was further raised up to 72C, being followed by addition of 120.2 g (= 2.00 moles) of acetic acid and aging at the temperature for 2 hours. The solvent composition was water/methanol = 81.8/18.2 (ratio by weight), and the amount of the solvent based on the racemic 2-methylpiperazine was 2.63 times by weight. Then, cooling was carried out down to 25C, taking 12 hours, and precipitated crystals were collected by filtration. The obtained crystals were dried in vacuum, to obtain 214.8 g (= 0.858 mole) of a diastereomer salt. The optical purity of the salt was 93.9%ee, and the yield of the S-isomer in the obtained salt based on the amount of the S-isomer in the supplied (+/-)-2-methylpiperazine was 83.2%. Subsequently, a 1-liter flask was charged with 380 g of water, and the obtained 214.8 g of crystals {pure (S)-2-methylpiperazine content = 83.4 g} were added. Perfect dissolution was achieved at 80 to 85C, and cooling was carried out down to 15C, taking 12 hours. Precipitated crystals were collected by filtration and dried in vacuum to obtain 187.2 g of a salt. Its optical purity was 99.4%ee, and the yield of the S-isomer in the obtained salt based on the amount of (S)-2-methylpiperazine in the supplied crystals was 89.8%. A 500 ml four-neck flask with a thermometer, condenser and stirrer was charged with 150 g of water, and 185.0 g of (S)-2-methylpiperazine D-tartaric acid salt (= 0.739 mole, optical purity of 2-methylpiperazine = 99.4%ee) obtained before and 69.1 g (= 0.863 mole) of 95% pure calcium hydroxide were added. The slurry was heated up to 70 to 80C, and stirred for 3 hours, then being cooled to room temperature. Subsequently, the non-dissolved salt was filtered away, to obtain the mother liquor. The mother liquor was GC-analyzed, and as a result, it was found that 68.7 g (= 0.686 mole) of optically active 2-methylpiperazine existed in the mother liquor (yield 92.8%). Furthermore, as a result of HPLC analysis, the optical purity of (S)-2-methylpiperazine was 99.4%ee. Then, water was distilled away till about 50 wt% was reached, being followed by addition of 1-butanol, and azeotropic dehydration was carried out till the water content of the system became less than 1 wt%. In a 1-liter four-neck flask, 50.0 g of the (S)-2-methylpiperazine (= 0.499 mole, optical purity 99.4%ee) obtained before was placed, and 440 g of 1-butanol was added for dissolution. The solution was cooled down to 0C, and 92.5 g (= 0.534 mole) of benzyl chlorocarbonate was added dropwise with the liquid temperature kept in a range from 0 to 8C. Then, stirring was carried out at 0C for 2 hours, and 300 g of 1-butanol was distilled away under reduced pressure, being followed by addition of 300 g of water. Subsequently 35% hydrochloric acid water was used to adjust the pH to 1.0, and 220 g of toluene was added, being followed by stirring for 30 minutes. The upper layer was then removed, and the same amount of toluene was added again. The same operation was repeated to carry out washing operation. Subsequently 48% sodium hydroxide aqueous solution was used to adjust the pH of the reaction solution to 12.1. In this case, white turbidity occurred due to liberated 1-benzyloxycarbonyl-3-methylpiperazine. To the white turbid solution, 400 g of toluene was added, and stirring water carried out for 30 minutes. The lower layer was then removed, and the upper layer was concentrated under reduced pressure at 60 to 70C in temperature. Subsequently toluene was distilled away to obtain 88.5 g of a concentrate. Eighty five point .zero grams of the obtained 1-benzyoxycarbonyl-3-methylpiperazine was fed to a thin film distiller (heating surface area 0.02 m2) using a liquid feed pump at 0.6 liter/h. The temperature of the heating medium was 150C, and a low-boiling component was cut at a vacuum degree of 360 Pa, to obtain 82.8 g of a liquid remaining in the distiller. The liquid remaining in the distiller was again fed to the same thin film distiller at 0.6 liter/h using a liquid feed pump. The temperature of the heating medium was 220C, and product distillation was carried out at 87 to 116 Pa in vacuum degree, to obtain 76.1 g of a distillate. The obtained compound was analyzed. As a result, the intended 1-benzyloxycarbonyl-3-methylpiperazine accounted for 99.4 liquid chromatography area %. The impurities showed 0.25 liquid chromatography area % for benzyl alcohol, 0.03 liquid chromatography area % for 1-benzyl-4-benzyloxycarbonyl-2-methylpiperazine, 0.02 liquid chromatography area % for 1-benzyl-2-methylpiperazine and no detection for 1,4-dibenzyloxycarbonyl-2-methylpiperazine (and 0.08 area % for sol…, 109-07-9
109-07-9 2-Methylpiperazine 66057, apiperazines compound, is more and more widely used in various fields.
Reference:
Patent; Toray Fine Chemicals Co., Ltd.; EP1548010; (2005); A1;,
Piperazine – Wikipedia
Piperazines – an overview | ScienceDirect Topics