In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Lewis acid-assisted Ir(III) reductive elimination enables construction of seven-membered-ring sulfoxides, published in 2020, which mentions a compound: 16004-15-2, mainly applied to dihydrodibenzothiepine oxide preparation chemoselective regioselective density functional theory; aralkyl sulfoxide oxidative reductive elimination Lewis acid iridium catalyst, Application In Synthesis of 1-(Bromomethyl)-4-iodobenzene.
Iridium has played an important role in the evolution of C-H activation chem. over the last half century owing to its high reactivity towards stoichiometric C-H bond cleavage; however, the use of Ir(III) complexes in catalytic C-H functionalization/C-C bond formation appears to have fallen off significantly. The main problem lies in the reductive elimination step, as iridium has a tendency to form stable and catalytically inactive Ir(III) species. Herein, with a rationally designed Lewis acid assisted oxidatively induced strategy, the sluggish Ir(III) reductive elimination is successfully facilitated, enabling the facile C-C bond formation. The X-ray crystal structure of a silver salt adduct of iridacycle and DFT calculations demonstrate that the sulfoxide group acts as a key bridge connecting the Ir(III) metal center with the silver Lewis acid, which facilitates the reductive elimination of the Ir(III) metallacycle. Further identification of oxidants was carried out by performing stoichiometric reactions, which enables the development of catalytic construction of various highly functionalized seven-membered-ring sulfoxides e.g., 5,7-dihydrodibenzo[c,e]thiepine 6-oxide, that are of great interest in medicinal chem. and materials science.
In addition to the literature in the link below, there is a lot of literature about this compound(1-(Bromomethyl)-4-iodobenzene)Application In Synthesis of 1-(Bromomethyl)-4-iodobenzene, illustrating the importance and wide applicability of this compound(16004-15-2).
Reference:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics