New explortion of 66-71-7

After consulting a lot of data, we found that this compound(66-71-7)Application of 66-71-7 can be used in many types of reactions. And in most cases, this compound has more advantages.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 66-71-7, is researched, Molecular C12H8N2, about Syntheses, structures and photocatalytic properties of ruthenium(II) complexes supported by a tetradentate cyclen ligand (cyclen = 1,4,7,10-tetraazacyclododecane), the main research direction is tetradentate cyclen tetraazacyclododecane ruthenium nitrogen ligand complex preparation electrochem; crystal mol structure tetraazacyclododecane ruthenium nitrogen ligand complex.Application of 66-71-7.

Treatment of [(cyclen)RuCl(dmso)]Cl (cyclen = 1,4,7,10-tetraazacyclododecane, dmso = dimethylsulfoxide, 1) with zinc powder in the presence of potassium hexafluorophosphate or sodium perchlorate in acetonitrile afforded the cationic complexes [(cyclen)Ru(dmso)(MeCN)]Q2 (Q = PF6 (2), ClO4 (3)). Interaction of 1, zinc powder and 4-tert-butylpyridine or pyridine in the presence of triethylamine and sodium perchlorate gave pyridine-ruthenium(II) complexes Na[(cyclen)Ru(dmso)(4-tBupy)](ClO4)3 (4) and [(cyclen)Ru(py)2](ClO4)2 (5), resp. While reactions of 1, zinc powder and 1,10-phenanthroline (phen) or 5,5′-dimethyl-2,2′-bipyridine (5,5′-Me2bpy) in the presence of triethylamine and potassium hexafluorophosphate gave bipyridine-ruthenium(II) complexes [(cyclen)Ru(phen)](PF6)2 (6) and [(cyclen)Ru(5,5′-Me2bpy)](PF6)2 (7), resp. Complexes 1-7 are characterized by IR, UV/Vis, NMR spectroscopies along with their electrochem. properties. The mol. structures of complexes 1-7 have been established by single-crystal x-ray diffraction. The photocatalytic properties of complexes 6 and 7 with a large π-electron delocalized system for the H2 evolution by water reduction were also investigated in the paper.

After consulting a lot of data, we found that this compound(66-71-7)Application of 66-71-7 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics