S6K1 inhibits HBV replication through inhibiting AMPK-ULK1 pathway and disrupting acetylation modification of H3K27 was written by Wang, Yun;Han, Ming;Liu, Shunai;Yuan, Xiaoxue;Zhao, Jing;Lu, Hongping;Han, Kai;Liang, Pu;Cheng, Jun. And the article was included in Life Sciences in 2021.SDS of cas: 1255517-76-0 This article mentions the following:
To investigated the effect of S6K1 on the replication and transcription of HBV DNA using multiple cell models. The pgRNA, total HBV RNA and HBV DNA level were detected by Real-time PCR. The HBcAg expression by Western blot and the activity of four HBV promoters, such as preS1, preS2/S, core, and X promoters by using dual luciferase reporter assay. Moreover, we determined S6K1 interacted with HBcAg in both cytoplasm and nucleus through Immunofluorescence, co-immunoprecipitation (CoIP) and Western blot. S6K1 inhibited HBV DNA replication and cccDNA-dependent transcription in HBV-expressing stable cell lines. The mechanistic study revealed that S6K1 suppressed HBV DNA replication by inhibiting AMPK-ULK1 autophagy pathway, and the nuclear S6K1 suppressed HBV cccDNA-dependent transcription by inhibiting the acetylation modification of H3K27. In addition, HBV capsid protein (HBcAg) suppressed the phosphorylation level of S6K1Thr389 by interacting with S6K1, indicating a viral antagonism of S6K1-mediated antiviral mechanism. The p70 ribosomal S6 kinase (S6K1) is a serine/threonine protein kinase, and it plays a significant role in different cellular processes. It has been previously reported that S6K1 affects hepatitis B virus (HBV) replication but the underlying mechanism remains unclear. In this study, our data suggested that the activation of S6K1 restricts HBV replication through inhibiting AMPK-ULK1 autophagy pathway and H3K27 acetylation. These findings indicated that S6K1 might be a potential therapeutic target for HBV infection. In the experiment, the researchers used many compounds, for example, 2-((4-(5-Ethylpyrimidin-4-yl)piperazin-1-yl)methyl)-6-(trifluoromethyl)-1H-benzo[d]imidazole (cas: 1255517-76-0SDS of cas: 1255517-76-0).
2-((4-(5-Ethylpyrimidin-4-yl)piperazin-1-yl)methyl)-6-(trifluoromethyl)-1H-benzo[d]imidazole (cas: 1255517-76-0) belongs to piperazine derivatives. A form in which piperazine is commonly available industrially is as the hexahydrate, C4H10N2. 6H2O, which melts at 44 °C and boils at 125–130 °C. Two common salts in the form of which piperazine is usually prepared for pharmaceutical or veterinary purposes are the citrate, 3C4H10N2.2C6H8O7 (i.e. containing 3 molecules of piperazine to 2 molecules of citric acid), and the adipate, C4H10N2.C6H10O4 (containing 1 molecule each of piperazine and adipic acid).SDS of cas: 1255517-76-0
Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics