Cummings, David F. published the artcileThree amino acids in the D2 dopamine receptor regulate selective ligand function and affinity, Related Products of piperazines, the publication is Journal of Neurochemistry (2009), 110(1), 45-57, database is CAplus and MEDLINE.
The D2 dopamine receptor is an important therapeutic target for the treatment of psychotic, agitated, and abnormal behavioral states. To better understand the specific interactions of subtype-selective ligands with dopamine receptor subtypes, seven ligands with high selectivity (>120-fold) for the D4 subtype of dopamine receptor were tested on wild-type and mutant D2 receptors. Five of the selective ligands were observed to have 21-fold to 293-fold increases in D2 receptor affinity when three non-conserved amino acids in TM2 and TM3 were mutated to the corresponding D4 amino acids. The two ligands with the greatest improvement in affinity for the D2 mutant receptor [i.e., 3-([4-(4-iodophenyl) piperazin-1-yl]methyl)-1H-pyrrolo[2,3-b]pyridine (L-750,667) and 1-[4-iodobenzyl]-4-[N-(3-isopropoxy-2-pyridinyl)-N-methyl]- aminopiperidine (RBI-257)] were investigated in functional assays. Consistent with their higher affinity for the mutant than for the wild-type receptor, concentrations of L-750,667 or RBI-257 that produced large reductions in the potency of quinpirole’s functional response in the mutant did not significantly reduce quinpirole’s functional response in the wild-type D2 receptor. In contrast to RBI-257 which is an antagonist at all receptors, L-750,667 is a partial agonist at the wild-type D2 but an antagonist at both the mutant D2 and wild-type D4 receptors. Our study demonstrates for the first time that the TM2/3 microdomain of the D2 dopamine receptor not only regulates the selective affinity of ligands, but in selected cases can also regulate their function. Utilizing a new docking technique that incorporates receptor backbone flexibility, the three non-conserved amino acids that encompass the TM2/3 microdomain were found to account in large part for the differences in intermol. steric contacts between the ligand and receptors. Consistent with the exptl. data, this model illustrates the interactions between a variety of subtype-selective ligands and the wild-type D2, mutant D2, or wild-type D4 receptors.
Journal of Neurochemistry published new progress about 337972-47-1. 337972-47-1 belongs to piperazines, auxiliary class Inhibitor, name is 2-((4-(4-Chlorophenyl)piperazin-1-yl)methyl)pyrazolo[1,5-a]pyridine, and the molecular formula is C18H19ClN4, Related Products of piperazines.
Referemce:
https://en.wikipedia.org/wiki/Piperazine,
Piperazines – an overview | ScienceDirect Topics