Sanguanpak, Samunya et al. published their research in Chemosphere in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine was first introduced as an anthelmintic in 1953. Piperazine compounds mediate their anthelmintic action by generally paralyzing parasites, allowing the host body to easily remove or expel the invading organism. Intermediate for a wide range of pharmaceuticals, polymers, dyes, corrosion inhibitors, rubber accelerators and surfactants.Safety of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid

TiO2-immobilized porous geopolymer composite membrane for removal of antibiotics in hospital wastewater was written by Sanguanpak, Samunya;Shongkittikul, Witaya;Saengam, Chitsuphang;Chiemchaisri, Wilai;Chiemchaisri, Chart. And the article was included in Chemosphere in 2022.Safety of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid The following contents are mentioned in the article:

This exptl. research proposes an environment-friendly and low-cost porous geopolymer composite membrane (PGCM) to treat antibiotics in hospital wastewater. The proposed PGCM consisted of two layers: a porous support layer and a dense coating layer. The dense coating layer was synthesized by incorporating variable TiO2 content (0, 2, 6, and 10 wt%) into the geopolymer matrix. The dense coating layer was of hierarchical mesoporous structure with 700μm in thickness and adhered to the porous support layer. The average pore size, total pore volume, and open porosity of the dense coating layer decreased with an increase in TiO2, resulting in reduced water permeability. The PGCM was applied to remove six target antibiotics including amoxicillin, ciprofloxacin, norfloxacin, sulfamethoxazole, tetracycline, and trimethoprim in real hospital wastewater. By comparison, the PGCM with 10 wt% TiO2 achieved the highest antibiotic removal efficiencies, with the adsorption and combined adsorption/photodegradation removal efficiencies for the target antibiotics of 38-75% and 74-86%, resp. The novelty of this research lies in the use of a tailor-made porous geopolymer composite membrane incorporated with TiO2 photooxidation as a single-step treatment of recalcitrant antibiotics contained in hospital wastewater. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Safety of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine was first introduced as an anthelmintic in 1953. Piperazine compounds mediate their anthelmintic action by generally paralyzing parasites, allowing the host body to easily remove or expel the invading organism. Intermediate for a wide range of pharmaceuticals, polymers, dyes, corrosion inhibitors, rubber accelerators and surfactants.Safety of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics