Liu, Xinghao et al. published their research in Journal of Environmental Management in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Simple N-substituted piperazines have been found in many drug molecules. Piperazine is formed as a co-product in the ammoniation of 1,2-dichloroethane or ethanolamine. These are the only routes to the chemical used commercially.Quality Control of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid

Prediction of pharmaceutical and personal care products elimination during heterogeneous catalytic ozonation via chemical kinetic model was written by Liu, Xinghao;Yang, Zhaoguang;Zhu, Wenxiu;Yang, Ying;Li, Haipu. And the article was included in Journal of Environmental Management in 2022.Quality Control of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid The following contents are mentioned in the article:

Prediction of the removal of pollutants is important for the process design and optimization of wastewater treatment. In this study, the heterogeneous catalytic ozonation chem. kinetic model based on reaction kinetic constants between O3 (and •OH) and pollutants, and pseudo-first order rate constants for pollutant adsorption was established. The model parameters were obtained via O3 and p-chlorobenzonic acid decay curves, and adsorption kinetic experiments, resp. Higher •OH exposures were obtained at the expense of lower O3 exposures during catalytic ozonation compared to simple ozonation. Importantly, the exptl. measured and model-predicted removal ratios correlated well in all reaction systems, with correlation coefficients above 0.950 in synthetic solution and 0.893-0.979 in secondary effluent. Furthermore, the model revealed that pollutants were degraded mainly by O3 and/or •OH oxidation during catalytic ozonation, while adsorption of pollutants on catalysts contributed negligibly. Hence, the degradation ratios of pollutants could be satisfactorily predicted using the simplified model based only on the O3 and •OH exposures in the heterogeneous catalytic ozonation systems with low adsorption capacity catalysts. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Quality Control of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Simple N-substituted piperazines have been found in many drug molecules. Piperazine is formed as a co-product in the ammoniation of 1,2-dichloroethane or ethanolamine. These are the only routes to the chemical used commercially.Quality Control of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics