Source, occurrence and risks of twenty antibiotics in vegetables and soils from facility agriculture through fixed-point monitoring and numerical simulation was written by Yu, Xiaolu;Zhang, Xinyu;Chen, Junhao;Li, Yang;Liu, Xiaoxia;Feng, Yang;Sun, Ying. And the article was included in Journal of Environmental Management in 2022.Formula: C16H18FN3O3 The following contents are mentioned in the article:
In this study, a universal method that combined fixed-point monitoring and numerical simulation was used to understand the source, fate and risks of antibiotics in environment. Results showed that the antibiotic concentration in vegetables, soil and manure from 53 fixed-point monitoring sampling sites were ND-18.47, ND-1438.50 and ND-24710.00¦Ìg kg-1, resp. There were pos. correlations between the antibiotic concentrations of vegetables and soil as well as between soil and manure. The average Amountsoil/manure values were 1.48-46.02, indicating that antibiotics built up pseudo persistent residues in soil due to repeated fertilization. The modified level-III fugacity model showed that tetracyclines and fluoroquinolones tend to remain in soil given their sorption and mobility, while sulfonamides were highly distributed in plants, especially in leaves. Norfloxacin, ofloxacin, sulfadiazine, sulfamethoxazole and sulfisoxazole were found to be risk factors in facility agriculture and should be continuously monitored during agricultural production Most importantly, we used the inversion method to determine the recommended maximum residue limits of antibiotics in soil. This will not only allow for better control of the amount of the antibiotics in the environment, but also act as a potential method to assess the risks of pollutants without maximum residue limits in the environment. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Formula: C16H18FN3O3).
1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Industrial applications of piperazine include the manufacture of plastics, resins, pesticides and brake fluids. Although many piperazine derivatives occur naturally, piperazine itself can be synthesized by reacting alcoholic ammonia with 1,2-dichloroethane, by the action of sodium and ethylene glycol on ethylene diamine hydrochloride, or by reduction of pyrazine with sodium in ethanol.Formula: C16H18FN3O3
Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics