26 Sep 2021 News Analyzing the synthesis route of 3-(4-Methylpiperazin-1-yl)propan-1-ol

The synthetic route of 5317-33-9 has been constantly updated, and we look forward to future research findings.

5317-33-9, 3-(4-Methylpiperazin-1-yl)propan-1-ol is a piperazines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5317-33-9, Step b:4.775 g (30 mmol) of 3-(4-methylpiperazin-1-yl)propan-1-ol are dissolved in 20 ml of dioxane, 20 ml of 4 N HCl in dioxane are added, and the mixture is evaporated to dryness. This residue is triturated in MTBE, filtered off with suction and dried. This solid (6.7 g) is suspended in 50 ml of acetonitrile, and 6 g (30 mmol) of trichloromethy choroformate, dissolved in 10 ml of acetonitrile, are added at 0. The mixture is stirred at room temperature for a further 48 h. The reaction mixture is filtered off with suction, washed with acetonitrile and dried, giving a white solid, m.p. 248-250 (decomposition).

The synthetic route of 5317-33-9 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; MERCK PATENT GESELLSCHAFT MIT BESCHRANKTER HAFTUNG; US2011/269756; (2011); A1;,
Piperazine – Wikipedia
Piperazines – an overview | ScienceDirect Topics

26 Sep 2021 News Analyzing the synthesis route of 3-(4-Methylpiperazin-1-yl)propan-1-ol

The synthetic route of 5317-33-9 has been constantly updated, and we look forward to future research findings.

5317-33-9, 3-(4-Methylpiperazin-1-yl)propan-1-ol is a piperazines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5317-33-9, Step b:4.775 g (30 mmol) of 3-(4-methylpiperazin-1-yl)propan-1-ol are dissolved in 20 ml of dioxane, 20 ml of 4 N HCl in dioxane are added, and the mixture is evaporated to dryness. This residue is triturated in MTBE, filtered off with suction and dried. This solid (6.7 g) is suspended in 50 ml of acetonitrile, and 6 g (30 mmol) of trichloromethy choroformate, dissolved in 10 ml of acetonitrile, are added at 0. The mixture is stirred at room temperature for a further 48 h. The reaction mixture is filtered off with suction, washed with acetonitrile and dried, giving a white solid, m.p. 248-250 (decomposition).

The synthetic route of 5317-33-9 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; MERCK PATENT GESELLSCHAFT MIT BESCHRANKTER HAFTUNG; US2011/269756; (2011); A1;,
Piperazine – Wikipedia
Piperazines – an overview | ScienceDirect Topics

Sep 2021 News Brief introduction of 3-(4-Methylpiperazin-1-yl)propan-1-ol

The synthetic route of 5317-33-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5317-33-9,3-(4-Methylpiperazin-1-yl)propan-1-ol,as a common compound, the synthetic route is as follows.,5317-33-9

4-Toluenesulphonyl chloride (3.2 g) was added to a stirred mixture of 1-(3-hydroxypropyl)4-methylpiperazine (2.4 g), triethylamine (4.6 ml) and methylene chloride (60 ml) and the resultant mixture was stirred at ambient temperature for 2 hours. The solution was washed in turn with a saturated aqueous sodium bicarbonate solution and with water and filtered through phase separating paper. The organic filtrate was evaporated to give 3-(4-methylpiperazin-1-yl)propyl 4-toluenesulphonate as an oil which crystallized on standing (3.7 g); Mass Spectrum: M+H+ 313.

The synthetic route of 5317-33-9 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Lambert, Christine Marie Paul; Ple, Patrick; US2004/44015; (2004); A1;,
Piperazine – Wikipedia
Piperazines – an overview | ScienceDirect Topics

Sep 2021 News Brief introduction of 3-(4-Methylpiperazin-1-yl)propan-1-ol

The synthetic route of 5317-33-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5317-33-9,3-(4-Methylpiperazin-1-yl)propan-1-ol,as a common compound, the synthetic route is as follows.,5317-33-9

4-Toluenesulphonyl chloride (3.2 g) was added to a stirred mixture of 1-(3-hydroxypropyl)4-methylpiperazine (2.4 g), triethylamine (4.6 ml) and methylene chloride (60 ml) and the resultant mixture was stirred at ambient temperature for 2 hours. The solution was washed in turn with a saturated aqueous sodium bicarbonate solution and with water and filtered through phase separating paper. The organic filtrate was evaporated to give 3-(4-methylpiperazin-1-yl)propyl 4-toluenesulphonate as an oil which crystallized on standing (3.7 g); Mass Spectrum: M+H+ 313.

The synthetic route of 5317-33-9 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Lambert, Christine Marie Paul; Ple, Patrick; US2004/44015; (2004); A1;,
Piperazine – Wikipedia
Piperazines – an overview | ScienceDirect Topics

Analyzing the synthesis route of 3-(4-Methylpiperazin-1-yl)propan-1-ol

The synthetic route of 5317-33-9 has been constantly updated, and we look forward to future research findings.

5317-33-9, 3-(4-Methylpiperazin-1-yl)propan-1-ol is a piperazines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5317-33-9, Step 7. General procedure 1: Di-tert-butyl azodicarboxylate (0.478 g, 2.08 mmol) was added portionwise to a mixture of product step 6 (1.66 mmol), 3-(4-methylpiperazin-1-yl)-propan-1-ol (synthesis described below, 0.276 g, 1.74 mmol), and triphenylphosphine (0.544 g, 2.08 mmol) in dichloromethane (20 mL) at r.t.. If necessary, further alcohol was added. After stirring for 2 h, the solution was concentrated to 10 mL, mounted on silica and chromatographed (gradient, dichloromethane to dichloromethane : methanol = 3:2) to obtain the desired ethers (~73%). Synthesis of 4-chloro-6-methoxy-7-[3-(4-methylpiperazin-1-yl)propoxy]quinazoline: The compound was synthesised according to general procedure 1 from 4-chloro-7-hydroxy-6-methoxyquinazoline. LC/ESI-MS: m/z =351 [M+H].

The synthetic route of 5317-33-9 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; 4SC AG; EP1785420; (2007); A1;,
Piperazine – Wikipedia
Piperazines – an overview | ScienceDirect Topics

Some tips on 3-(4-Methylpiperazin-1-yl)propan-1-ol

5317-33-9 3-(4-Methylpiperazin-1-yl)propan-1-ol 79208, apiperazines compound, is more and more widely used in various fields.

5317-33-9, 3-(4-Methylpiperazin-1-yl)propan-1-ol is a piperazines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5317-33-9, 4-Toluenesulphonyl chloride (3.2 g) was added to a stirred mixture of 1-(3-hydroxypropyl)-4-methylpiperazine (2.4 g), triethylamine (4.6 ml) and methylene chloride (60 ml) and the resultant mixture was stirred at ambient temperature for 2 hours. The solution was washed in turn with a saturated aqueous sodium bicarbonate solution and with water and filtered through phase separating paper. The organic filtrate was evaporated to give 3-(4-methylpiperazin-1-yl)propyl 4-toluenesulphonate as an oil which crystallized on standing (3.7 g); Mass Spectrum: M+H+ 313.

5317-33-9 3-(4-Methylpiperazin-1-yl)propan-1-ol 79208, apiperazines compound, is more and more widely used in various fields.

Reference:
Patent; AstraZeneca AB; US2004/48881; (2004); A1;,
Piperazine – Wikipedia
Piperazines – an overview | ScienceDirect Topics

Analyzing the synthesis route of 3-(4-Methylpiperazin-1-yl)propan-1-ol

The synthetic route of 5317-33-9 has been constantly updated, and we look forward to future research findings.

5317-33-9, 3-(4-Methylpiperazin-1-yl)propan-1-ol is a piperazines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5317-33-9, Step 7. General procedure 1: Di-tert-butyl azodicarboxylate (0.478 g, 2.08 mmol) was added portionwise to a mixture of product step 6 (1.66 mmol), 3-(4-methylpiperazin-1-yl)-propan-1-ol (synthesis described below, 0.276 g, 1.74 mmol), and triphenylphosphine (0.544 g, 2.08 mmol) in dichloromethane (20 mL) at r.t.. If necessary, further alcohol was added. After stirring for 2 h, the solution was concentrated to 10 mL, mounted on silica and chromatographed (gradient, dichloromethane to dichloromethane : methanol = 3:2) to obtain the desired ethers (~73%). Synthesis of 4-chloro-6-methoxy-7-[3-(4-methylpiperazin-1-yl)propoxy]quinazoline: The compound was synthesised according to general procedure 1 from 4-chloro-7-hydroxy-6-methoxyquinazoline. LC/ESI-MS: m/z =351 [M+H].

The synthetic route of 5317-33-9 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; 4SC AG; EP1785420; (2007); A1;,
Piperazine – Wikipedia
Piperazines – an overview | ScienceDirect Topics

Some tips on 3-(4-Methylpiperazin-1-yl)propan-1-ol

5317-33-9 3-(4-Methylpiperazin-1-yl)propan-1-ol 79208, apiperazines compound, is more and more widely used in various fields.

5317-33-9, 3-(4-Methylpiperazin-1-yl)propan-1-ol is a piperazines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5317-33-9, 4-Toluenesulphonyl chloride (3.2 g) was added to a stirred mixture of 1-(3-hydroxypropyl)-4-methylpiperazine (2.4 g), triethylamine (4.6 ml) and methylene chloride (60 ml) and the resultant mixture was stirred at ambient temperature for 2 hours. The solution was washed in turn with a saturated aqueous sodium bicarbonate solution and with water and filtered through phase separating paper. The organic filtrate was evaporated to give 3-(4-methylpiperazin-1-yl)propyl 4-toluenesulphonate as an oil which crystallized on standing (3.7 g); Mass Spectrum: M+H+ 313.

5317-33-9 3-(4-Methylpiperazin-1-yl)propan-1-ol 79208, apiperazines compound, is more and more widely used in various fields.

Reference:
Patent; AstraZeneca AB; US2004/48881; (2004); A1;,
Piperazine – Wikipedia
Piperazines – an overview | ScienceDirect Topics

Simple exploration of 5317-33-9

5317-33-9 3-(4-Methylpiperazin-1-yl)propan-1-ol 79208, apiperazines compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5317-33-9,3-(4-Methylpiperazin-1-yl)propan-1-ol,as a common compound, the synthetic route is as follows.

General procedure: To a solution of triphenylphosphine (0.37 mmol) in THF (30 mL) was slowly added diisopropyl azodicarboxylate (0.37 mmol) in 15 min at 0 C and the mixture was stirred for another 15 min. At the same temperature, to the resulting mixture was slowly added a solution of 20 (0.185 mmol) and corresponding alcohol (0.37 mmol) dissolved in 20 mL THF. The ice bar was removed and the reaction mixture was stirred at room temperature for 12 h. The reaction mixture was evaporated in vacuo, and the residue was purified by column chromatography to afford the product., 5317-33-9

5317-33-9 3-(4-Methylpiperazin-1-yl)propan-1-ol 79208, apiperazines compound, is more and more widely used in various fields.

Reference:
Article; Xing, Weiqiang; Ai, Jing; Jin, Shiyu; Shi, Zhangxing; Peng, Xia; Wang, Lang; Ji, Yinchun; Lu, Dong; Liu, Yang; Geng, Meiyu; Hu, Youhong; European Journal of Medicinal Chemistry; vol. 95; (2015); p. 302 – 312;,
Piperazine – Wikipedia
Piperazines – an overview | ScienceDirect Topics

Brief introduction of 5317-33-9

The synthetic route of 5317-33-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5317-33-9,3-(4-Methylpiperazin-1-yl)propan-1-ol,as a common compound, the synthetic route is as follows.

5317-33-9, General procedure: The syntheses of compounds 3-20 were carried out accordingto our previously reported method [17]. Briefly, at room temperature,the acid 2 (150 mg, 0.5 mmol) was acyl chlorinated withthionyl chloride (2.5 mL) and then esterized with various alcoholderivatives in chloroform. The reaction mixture was heated underreflux for 5 h to overnight, and cooled to room temperature. Thesolvent was evaporated under reduced pressure. The crude productwas purified by using silica gel column chromatography to give thetarget product.

The synthetic route of 5317-33-9 has been constantly updated, and we look forward to future research findings.

Reference:
Article; Yang, Hui; Wang, Hao-Wen; Zhu, Teng-Wei; Yu, Le-Mao; Chen, Jian-Wen; Wang, Lu-Xia; Shi, Lei; Li, Ding; Gu, Lian-Quan; Huang, Zhi-Shu; An, Lin-Kun; European Journal of Medicinal Chemistry; vol. 127; (2017); p. 166 – 173;,
Piperazine – Wikipedia
Piperazines – an overview | ScienceDirect Topics