Kim, Young Yeon et al. published their research in FASEB Journal in 2021 | CAS: 548472-68-0

4-(cis-4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxyphenyl)-4,5-dihydro-1H-imidazole-1-carbonyl)piperazin-2-one (cas: 548472-68-0) belongs to piperazine derivatives. A form in which piperazine is commonly available industrially is as the hexahydrate, C4H10N2. 6H2O, which melts at 44 °C and boils at 125–130 °C. Two common salts in the form of which piperazine is usually prepared for pharmaceutical or veterinary purposes are the citrate, 3C4H10N2.2C6H8O7 (i.e. containing 3 molecules of piperazine to 2 molecules of citric acid), and the adipate, C4H10N2.C6H10O4 (containing 1 molecule each of piperazine and adipic acid).Formula: C30H30Cl2N4O4

P53-mediated regulation of mitochondrial dynamics plays a pivotal role in the senescence of various normal cells as well as cancer cells was written by Kim, Young Yeon;Um, Jee-Hyun;Shin, Dong Jin;Jeong, Dae Jin;Hong, Young Bin;Yun, Jeanho. And the article was included in FASEB Journal in 2021.Formula: C30H30Cl2N4O4 This article mentions the following:

The tumor suppressor p53 is known as a critical mediator of many cellular processes, including cellular senescence, but its role in mitochondrial dynamics is not fully understood. We have previously shown that p53 regulates mitochondrial dynamics via the PKA-Drp1 pathway to induce cellular senescence. In this study, to further understand the role of p53-dependent regulation of mitochondrial dynamics, the effect of p53 expression on mitochondrial morphol. was examined in various cancer cell lines and normal human cells. We found that p53 induced remarkable mitochondrial elongation and cellular senescence in various cancer cells regardless of their p53 status. p53 also induced mitochondrial elongation in various human primary normal cells, suggesting that p53-mediated mitochondrial elongation is a general phenomenon. Moreover, we found that p53 plays an essential role in mitochondrial elongation in H-Ras-induced cellular senescence and in the replicative senescence of normal human cells. Treatment with the MDM-2 antagonist Nutlin-3a also induced mitochondrial elongation through the PKA-Drp1 pathway in IMR90 normal human cells. Furthermore, the inhibition of PKA activity in late-passage normal cells significantly reduced both mitochondrial elongation and cellular senescence, suggesting that the p53-PKA pathway is essential for maintaining the senescence phenotype in normal cells. Together, these results further confirm the direct regulation of mitochondrial dynamics by p53 and the important role of p53-mediated mitochondrial elongation in cellular senescence. In the experiment, the researchers used many compounds, for example, 4-(cis-4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxyphenyl)-4,5-dihydro-1H-imidazole-1-carbonyl)piperazin-2-one (cas: 548472-68-0Formula: C30H30Cl2N4O4).

4-(cis-4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxyphenyl)-4,5-dihydro-1H-imidazole-1-carbonyl)piperazin-2-one (cas: 548472-68-0) belongs to piperazine derivatives. A form in which piperazine is commonly available industrially is as the hexahydrate, C4H10N2. 6H2O, which melts at 44 °C and boils at 125–130 °C. Two common salts in the form of which piperazine is usually prepared for pharmaceutical or veterinary purposes are the citrate, 3C4H10N2.2C6H8O7 (i.e. containing 3 molecules of piperazine to 2 molecules of citric acid), and the adipate, C4H10N2.C6H10O4 (containing 1 molecule each of piperazine and adipic acid).Formula: C30H30Cl2N4O4

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Klein, Alyssa M. et al. published their research in Proceedings of the National Academy of Sciences of the United States of America in 2021 | CAS: 548472-68-0

4-(cis-4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxyphenyl)-4,5-dihydro-1H-imidazole-1-carbonyl)piperazin-2-one (cas: 548472-68-0) belongs to piperazine derivatives. The piperazine scaffold is often found in biologically active compounds in different therapeutic areas. These therapeutic areas include antifungals, antidepressants, antivirals, and serotonin receptor (5-HT) antagonists/agonists. Piperazine is formed as a co-product in the ammoniation of 1,2-dichloroethane or ethanolamine. These are the only routes to the chemical used commercially.Reference of 548472-68-0

MDM2, MDMX, and p73 regulate cell-cycle progression in the absence of wild-type p53 was written by Klein, Alyssa M.;Biderman, Lynn;Tong, David;Alaghebandan, Bita;Plumber, Sakina A.;Mueller, Helen S.;van Vlimmeren, Anne;Katz, Chen;Prives, Carol. And the article was included in Proceedings of the National Academy of Sciences of the United States of America in 2021.Reference of 548472-68-0 This article mentions the following:

The p53 tumor suppressor protein, known to be critically important in several processes including cell-cycle arrest and apoptosis, is highly regulated by multiple mechanisms, most certifiably the Murine Double Minute 2-Murine Double Minute X (MDM2-MDMX) heterodimer. The role of MDM2-MDMX in cell-cycle regulation through inhibition of p53 has been well established. Here we report that in cells either lacking p53 or expressing certain tumor-derived mutant forms of p53, loss of endogenous MDM2 or MDMX, or inhibition of E3 ligase activity of the heterocomplex, causes cell-cycle arrest. This arrest is correlated with a reduction in E2F1, E2F3, and p73 levels. Remarkably, direct ablation of endogenous p73 produces a similar effect on the cell cycle and the expression of certain E2F family members at both protein and mRNA levels. These data suggest that MDM2 and MDMX, working at least in part as a heterocomplex, may play a p53-independent role in maintaining cell-cycle progression by promoting the activity of E2F family members as well as p73, making them a potential target of interest in cancers lacking wild-type p53. In the experiment, the researchers used many compounds, for example, 4-(cis-4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxyphenyl)-4,5-dihydro-1H-imidazole-1-carbonyl)piperazin-2-one (cas: 548472-68-0Reference of 548472-68-0).

4-(cis-4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxyphenyl)-4,5-dihydro-1H-imidazole-1-carbonyl)piperazin-2-one (cas: 548472-68-0) belongs to piperazine derivatives. The piperazine scaffold is often found in biologically active compounds in different therapeutic areas. These therapeutic areas include antifungals, antidepressants, antivirals, and serotonin receptor (5-HT) antagonists/agonists. Piperazine is formed as a co-product in the ammoniation of 1,2-dichloroethane or ethanolamine. These are the only routes to the chemical used commercially.Reference of 548472-68-0

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Guo, Leilei et al. published their research in Materials Science & Engineering, C: Materials for Biological Applications in 2020 | CAS: 548472-68-0

4-(cis-4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxyphenyl)-4,5-dihydro-1H-imidazole-1-carbonyl)piperazin-2-one (cas: 548472-68-0) belongs to piperazine derivatives. The piperazine scaffold is often found in biologically active compounds in different therapeutic areas. These therapeutic areas include antifungals, antidepressants, antivirals, and serotonin receptor (5-HT) antagonists/agonists. Two common salts in the form of which piperazine is usually prepared for pharmaceutical or veterinary purposes are the citrate, 3C4H10N2.2C6H8O7 (i.e. containing 3 molecules of piperazine to 2 molecules of citric acid), and the adipate, C4H10N2.C6H10O4 (containing 1 molecule each of piperazine and adipic acid).Quality Control of 4-(cis-4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxyphenyl)-4,5-dihydro-1H-imidazole-1-carbonyl)piperazin-2-one

A stimuli-responsive combination therapy for recovering p53-inactivation associated drug resistance was written by Guo, Leilei;Xu, Yurui;Zhou, Anwei;Zhang, Lei;Sun, Lei;Gao, Ya;Chen, Jianmei;Shan, Xue;Zhang, Jikang;Ge, Junliang;An, Xueying;Liu, Xiaoxuan;Zhang, Yu;Ning, Xinghai. And the article was included in Materials Science & Engineering, C: Materials for Biological Applications in 2020.Quality Control of 4-(cis-4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxyphenyl)-4,5-dihydro-1H-imidazole-1-carbonyl)piperazin-2-one This article mentions the following:

Drug resistance is a major hindrance in the anticancer treatment, which encourages the development of effective therapeutic strategies. For the first time, MDM2-mediated p53 degradation was identified as a critical factor for developing acquired resistance of doxorubicin (DOX) in HepG2 tumor spheroids, which could be effectively reversed by MDM2 inhibitor MI-773, thereby improving anticancer effects. Therefore, a pH-sensitive liposomal formulation of DOX and MI-773 (LipD/M@CMCS) were developed for recovering p53-mediated DOX resistance in hepatocellular carcinoma. LipD/M@CMCS were composed of cationic liposomes covered with carboxymethyl chitosan (pI = 6.8), and were stable in the physiol. condition (pH 7.4), but rapidly converted to cationic liposomes in tumor acidic microenvironment (pH 6.5), endowing them with tumor specificity and enhanced cellular uptake. We showed that LipD/M@CMCS could not only effectively induce cell apoptosis in HepG2 tumor spheroids, but significantly inhibit tumor growth with minimal adverse effects. In summary, selective regulation of MDM2 in cancer cells is a promising strategy to overcome DOX resistance, and may provide a perspective on the management of malignant tumors. In the experiment, the researchers used many compounds, for example, 4-(cis-4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxyphenyl)-4,5-dihydro-1H-imidazole-1-carbonyl)piperazin-2-one (cas: 548472-68-0Quality Control of 4-(cis-4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxyphenyl)-4,5-dihydro-1H-imidazole-1-carbonyl)piperazin-2-one).

4-(cis-4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxyphenyl)-4,5-dihydro-1H-imidazole-1-carbonyl)piperazin-2-one (cas: 548472-68-0) belongs to piperazine derivatives. The piperazine scaffold is often found in biologically active compounds in different therapeutic areas. These therapeutic areas include antifungals, antidepressants, antivirals, and serotonin receptor (5-HT) antagonists/agonists. Two common salts in the form of which piperazine is usually prepared for pharmaceutical or veterinary purposes are the citrate, 3C4H10N2.2C6H8O7 (i.e. containing 3 molecules of piperazine to 2 molecules of citric acid), and the adipate, C4H10N2.C6H10O4 (containing 1 molecule each of piperazine and adipic acid).Quality Control of 4-(cis-4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxyphenyl)-4,5-dihydro-1H-imidazole-1-carbonyl)piperazin-2-one

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Miyajima, Chiharu et al. published their research in Pharmaceuticals in 2022 | CAS: 548472-68-0

4-(cis-4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxyphenyl)-4,5-dihydro-1H-imidazole-1-carbonyl)piperazin-2-one (cas: 548472-68-0) belongs to piperazine derivatives. Industrial applications of piperazine include the manufacture of plastics, resins, pesticides and brake fluids. Although many piperazine derivatives occur naturally, piperazine itself can be synthesized by reacting alcoholic ammonia with 1,2-dichloroethane, by the action of sodium and ethylene glycol on ethylene diamine hydrochloride, or by reduction of pyrazine with sodium in ethanol.HPLC of Formula: 548472-68-0

HMG-CoA Reductase Inhibitor Statins Activate the Transcriptional Activity of p53 by Regulating the Expression of TAZ was written by Miyajima, Chiharu;Hayakawa, Yurika;Inoue, Yasumichi;Nagasaka, Mai;Hayashi, Hidetoshi. And the article was included in Pharmaceuticals in 2022.HPLC of Formula: 548472-68-0 This article mentions the following:

Transcriptional coactivator with PDZ-binding motif (TAZ) is a downstream transcriptional regulator of the Hippo pathway that controls cell growth and differentiation. The aberrant activation of TAZ correlates with a poor prognosis in human cancers, such as breast and colon cancers. We previously demonstrated that TAZ inhibited the tumor suppressor functions of p53 and enhanced cell proliferation. Statins, which are used to treat dyslipidemia, have been reported to suppress the activity of TAZ and exert anti-tumor effects. In the present study, we focused on the regulation of p53 functions by TAZ and investigated whether statins modulate these functions via TAZ. The results obtained suggest that statins, such as simvastatin and fluvastatin, activated the transcriptional function of p53 by suppressing TAZ protein expression. Furthermore, co-treatment with simvastatin and anti-tumor agents that cooperatively activate p53 suppressed cancer cell survival. These results indicate a useful mechanism by which statins enhance the effects of anti-tumor agents through the activation of p53 and may represent a novel approach to cancer therapy. In the experiment, the researchers used many compounds, for example, 4-(cis-4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxyphenyl)-4,5-dihydro-1H-imidazole-1-carbonyl)piperazin-2-one (cas: 548472-68-0HPLC of Formula: 548472-68-0).

4-(cis-4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxyphenyl)-4,5-dihydro-1H-imidazole-1-carbonyl)piperazin-2-one (cas: 548472-68-0) belongs to piperazine derivatives. Industrial applications of piperazine include the manufacture of plastics, resins, pesticides and brake fluids. Although many piperazine derivatives occur naturally, piperazine itself can be synthesized by reacting alcoholic ammonia with 1,2-dichloroethane, by the action of sodium and ethylene glycol on ethylene diamine hydrochloride, or by reduction of pyrazine with sodium in ethanol.HPLC of Formula: 548472-68-0

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Patel, Ankit et al. published their research in Cancer Research in 2020 | CAS: 548472-68-0

4-(cis-4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxyphenyl)-4,5-dihydro-1H-imidazole-1-carbonyl)piperazin-2-one (cas: 548472-68-0) belongs to piperazine derivatives. Industrial applications of piperazine include the manufacture of plastics, resins, pesticides and brake fluids. Outside the body, piperazine has a remarkable power to dissolve uric acid and producing a soluble urate, but in clinical experience it has not proved equally successful. Safety of 4-(cis-4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxyphenyl)-4,5-dihydro-1H-imidazole-1-carbonyl)piperazin-2-one

Targeting p63 upregulation abrogates resistance to MAPK inhibitors in melanoma was written by Patel, Ankit;Garcia, Lucia Fraile;Mannella, Viviana;Gammon, Luke;Borg, Tiffanie-Marie;Maffucci, Tania;Scatolini, Maria;Chiorino, Giovanna;Vergani, Elisabetta;Rodolfo, Monica;Maurichi, Andrea;Posch, Christian;Matin, Rubeta Nishat;Harwood, Catherine A.;Bergamaschi, Daniele. And the article was included in Cancer Research in 2020.Safety of 4-(cis-4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxyphenyl)-4,5-dihydro-1H-imidazole-1-carbonyl)piperazin-2-one This article mentions the following:

Targeting the MAPK pathway by combined inhibition of BRAF and MEK has increased overall survival in advanced BRAF-mutant melanoma in both therapeutic and adjuvant clin. settings. However, a significant proportion of tumors develop acquired resistance, leading to treatment failure. We have previously shown p63 to be an important inhibitor of p53-induced apoptosis in melanoma following genotoxic drug exposure. Here we investigated the role of p63 in acquired resistance to MAPK inhibition and show that p63 isoforms are upregulated in melanoma cell lines chronically exposed to BRAF and MEK inhibition, with consequent increased resistance to apoptosis. This p63 upregulation was the result of its reduced degradation by the E3 ubiquitin ligase FBXW7. FBXW7 was itself regulated by MDM2, and in therapy-resistant melanoma cell lines, nuclear accumulation of MDM2 caused downregulation of FBXW7 and consequent upregulation of p63. Consistent with this, both FBXW7 inactivating mutations and MDM2 upregulation were found in melanoma clin. samples. Treatment of MAPK inhibitor-resistant melanoma cells with MDM2 inhibitor Nutlin-3A restored FBXW7 expression and p63 degradation in a dose-dependent manner and sensitized these cells to apoptosis. Collectively, these data provide a compelling rationale for future investigation of nutlin-3A as an approach to abrogate acquired resistance of melanoma to MAPK inhibitor targeted therapy. In the experiment, the researchers used many compounds, for example, 4-(cis-4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxyphenyl)-4,5-dihydro-1H-imidazole-1-carbonyl)piperazin-2-one (cas: 548472-68-0Safety of 4-(cis-4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxyphenyl)-4,5-dihydro-1H-imidazole-1-carbonyl)piperazin-2-one).

4-(cis-4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxyphenyl)-4,5-dihydro-1H-imidazole-1-carbonyl)piperazin-2-one (cas: 548472-68-0) belongs to piperazine derivatives. Industrial applications of piperazine include the manufacture of plastics, resins, pesticides and brake fluids. Outside the body, piperazine has a remarkable power to dissolve uric acid and producing a soluble urate, but in clinical experience it has not proved equally successful. Safety of 4-(cis-4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxyphenyl)-4,5-dihydro-1H-imidazole-1-carbonyl)piperazin-2-one

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Park, Seong-Hyun et al. published their research in Journal of the American Chemical Society in 2019 | CAS: 548472-68-0

4-(cis-4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxyphenyl)-4,5-dihydro-1H-imidazole-1-carbonyl)piperazin-2-one (cas: 548472-68-0) belongs to piperazine derivatives. A form in which piperazine is commonly available industrially is as the hexahydrate, C4H10N2. 6H2O, which melts at 44 °C and boils at 125–130 °C. Two common salts in the form of which piperazine is usually prepared for pharmaceutical or veterinary purposes are the citrate, 3C4H10N2.2C6H8O7 (i.e. containing 3 molecules of piperazine to 2 molecules of citric acid), and the adipate, C4H10N2.C6H10O4 (containing 1 molecule each of piperazine and adipic acid).Formula: C30H30Cl2N4O4

Analysis of Protein-Protein Interaction in a Single Live Cell by Using a FRET System Based on Genetic Code Expansion Technology was written by Park, Seong-Hyun;Ko, Wooseok;Lee, Hyun Soo;Shin, Injae. And the article was included in Journal of the American Chemical Society in 2019.Formula: C30H30Cl2N4O4 This article mentions the following:

Hsp70 is known to directly bind to Bax for suppression of apoptosis. However, mechanisms on how Bax is dissociated from its complex with Hsp70 during apoptosis remain largely unknown. In the current study, the authors developed the efficient fluorescence resonance energy transfer (FRET) system which consisted of Hsp70-YFP and fluorescent amino acid (ANAP)-incorporated Bax, which was generated by using genetic code expansion technol., and applied the FRET system to elucidate mechanisms on how apoptosis-inducing substances dissociate Bax from Hsp70. Time-dependent anal. of single live cell images showed that Bax activators binding to Bax trigger sites inhibited the Bax-Hsp70 interaction but a Bax activator, which blocks phosphorylation of S184 via binding to the C-terminal S184 site, did not affect this interaction. Addnl., an inhibitor for Hsp70-Hsp40 interaction blocked the Bax-Hsp70 interaction. Furthermore, p53 activators promoted the dissociation of Bax from Hsp70 by reactivating p53 which disrupted the Bax-Hsp70 interaction. The authors also found that death ligands and a Bcl-2 inhibitor enhanced the dissociation of Bax from Hsp70 by activating activator BH3-only proteins. Results from this effort suggest that FRET systems consisting of the ANAP-incorporated protein and the YFP fusion protein will be valuable tools to gain an understanding of other types of protein-protein interactions. In the experiment, the researchers used many compounds, for example, 4-(cis-4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxyphenyl)-4,5-dihydro-1H-imidazole-1-carbonyl)piperazin-2-one (cas: 548472-68-0Formula: C30H30Cl2N4O4).

4-(cis-4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxyphenyl)-4,5-dihydro-1H-imidazole-1-carbonyl)piperazin-2-one (cas: 548472-68-0) belongs to piperazine derivatives. A form in which piperazine is commonly available industrially is as the hexahydrate, C4H10N2. 6H2O, which melts at 44 °C and boils at 125–130 °C. Two common salts in the form of which piperazine is usually prepared for pharmaceutical or veterinary purposes are the citrate, 3C4H10N2.2C6H8O7 (i.e. containing 3 molecules of piperazine to 2 molecules of citric acid), and the adipate, C4H10N2.C6H10O4 (containing 1 molecule each of piperazine and adipic acid).Formula: C30H30Cl2N4O4

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics