Wang, Huan et al. published their research in Chemosphere in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine belongs to the family of medicines called anthelmintics. Two common salts in the form of which piperazine is usually prepared for pharmaceutical or veterinary purposes are the citrate, 3C4H10N2.2C6H8O7 (i.e. containing 3 molecules of piperazine to 2 molecules of citric acid), and the adipate, C4H10N2.C6H10O4 (containing 1 molecule each of piperazine and adipic acid).Application In Synthesis of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid

Fe3N nanoparticles embedded in N-doped porous magnetic graphene for peroxymonosulfate activation: Radical and nonradical mechanism was written by Wang, Huan;Liu, Shaobo;Liu, Yunguo;Tang, Yetao;Dai, Mingyang;Chen, Qiang;Deng, Yuqi. And the article was included in Chemosphere in 2022.Application In Synthesis of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid The following contents are mentioned in the article:

The persistence of pharmaceutical and personal care products (PPCPs) such as norfloxacin (NFX) poses a serious threat to the water environment, and the development of efficient and cost-effective advanced oxidation catalysts is an important step toward resolving this issue. Herein, Fe and N co-doped graphene (FeNGO) was synthesized from graphene oxide (GO), urea, and iron salt via simple impregnation pyrolysis, and applied for activating peroxymonosulfate (PMS) to degrade NFX. FeNGO possessed a two-dimensional porous sheet structure and was rich in defects, nitrogen species, and active sites. Compared with the control catalyst doped with N or Fe alone, FeNGO/PMS system showed the best degradation performance with 97.7% removal of NFX after 30 min, the rate constant was 7.1 and 1.7 times than that for NGO and FeGO, resp. Fe3N was the main active site of FeNGO, and it is confirmed that singlet oxygen (1O2) and superoxide radical (O•2) were the primary oxidation active species (ROS) during NFX degradation The formation of 1O2 came from the transformation of OO•2 and PMS decomposition FeNGO showed strong pH adaptability, and also exhibited stale degradation performance in saliferous water matrixes. It is believed that this work will offer theor. and practical guidance for PMS activation by non-radical pathways. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Application In Synthesis of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine belongs to the family of medicines called anthelmintics. Two common salts in the form of which piperazine is usually prepared for pharmaceutical or veterinary purposes are the citrate, 3C4H10N2.2C6H8O7 (i.e. containing 3 molecules of piperazine to 2 molecules of citric acid), and the adipate, C4H10N2.C6H10O4 (containing 1 molecule each of piperazine and adipic acid).Application In Synthesis of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Yu, Xiaolu et al. published their research in Journal of Environmental Management in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Industrial applications of piperazine include the manufacture of plastics, resins, pesticides and brake fluids. Although many piperazine derivatives occur naturally, piperazine itself can be synthesized by reacting alcoholic ammonia with 1,2-dichloroethane, by the action of sodium and ethylene glycol on ethylene diamine hydrochloride, or by reduction of pyrazine with sodium in ethanol.Formula: C16H18FN3O3

Source, occurrence and risks of twenty antibiotics in vegetables and soils from facility agriculture through fixed-point monitoring and numerical simulation was written by Yu, Xiaolu;Zhang, Xinyu;Chen, Junhao;Li, Yang;Liu, Xiaoxia;Feng, Yang;Sun, Ying. And the article was included in Journal of Environmental Management in 2022.Formula: C16H18FN3O3 The following contents are mentioned in the article:

In this study, a universal method that combined fixed-point monitoring and numerical simulation was used to understand the source, fate and risks of antibiotics in environment. Results showed that the antibiotic concentration in vegetables, soil and manure from 53 fixed-point monitoring sampling sites were ND-18.47, ND-1438.50 and ND-24710.00μg kg-1, resp. There were pos. correlations between the antibiotic concentrations of vegetables and soil as well as between soil and manure. The average Amountsoil/manure values were 1.48-46.02, indicating that antibiotics built up pseudo persistent residues in soil due to repeated fertilization. The modified level-III fugacity model showed that tetracyclines and fluoroquinolones tend to remain in soil given their sorption and mobility, while sulfonamides were highly distributed in plants, especially in leaves. Norfloxacin, ofloxacin, sulfadiazine, sulfamethoxazole and sulfisoxazole were found to be risk factors in facility agriculture and should be continuously monitored during agricultural production Most importantly, we used the inversion method to determine the recommended maximum residue limits of antibiotics in soil. This will not only allow for better control of the amount of the antibiotics in the environment, but also act as a potential method to assess the risks of pollutants without maximum residue limits in the environment. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Formula: C16H18FN3O3).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Industrial applications of piperazine include the manufacture of plastics, resins, pesticides and brake fluids. Although many piperazine derivatives occur naturally, piperazine itself can be synthesized by reacting alcoholic ammonia with 1,2-dichloroethane, by the action of sodium and ethylene glycol on ethylene diamine hydrochloride, or by reduction of pyrazine with sodium in ethanol.Formula: C16H18FN3O3

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Zhu, Dekang et al. published their research in Poultry Science in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Industrial applications of piperazine include the manufacture of plastics, resins, pesticides and brake fluids. Two common salts in the form of which piperazine is usually prepared for pharmaceutical or veterinary purposes are the citrate, 3C4H10N2.2C6H8O7 (i.e. containing 3 molecules of piperazine to 2 molecules of citric acid), and the adipate, C4H10N2.C6H10O4 (containing 1 molecule each of piperazine and adipic acid).COA of Formula: C16H18FN3O3

Emergence of plasmid-mediated tigecycline, β-lactam and florfenicol resistance genes tet(X), blaOXA-347 and floR in Riemerella anatipestifer isolated in China was written by Zhu, Dekang;Wei, Xinyi;Zhu, Hong;Yang, Zhishuang;Wang, Mingshu;Jia, Renyong;Chen, Shun;Liu, Mafeng;Zhao, Xinxin;Yang, Qiao;Wu, Ying;Zhang, Shaqiu;Huang, Juan;Ou, Xumin;Mao, Sai;Gao, Qun;Sun, Di;Tian, Bin;Cheng, Anchun. And the article was included in Poultry Science in 2022.COA of Formula: C16H18FN3O3 The following contents are mentioned in the article:

Bacterial antimicrobial resistance (AMR) continues to develop, with the horizontal transfer of antibiotic resistance genes (ARGs) through plasmids playing a major role. Recently, the antimicrobial resistance of R. anatipestifer has become increasingly severe, jeopardizing the development of the poultry industry. In this study, we used PromethION to determine the whole genome sequence of R. anatipestifer RCAD0416, a multidrug-resistant isolate from China. We detected a plasmid in the isolate. We named the plasmid pRCAD0416RA-1; the plasmid was 37356 bp in size with 36 putative open reading frames and included the blaOXA-347, floR, tet(X), ermF, ereD, and AadS resistance genes. Most resistance genes might be obtained from R. anatipestifer HXb2. Mobile elements and floR might be transmitted by plasmid pB18-2 from Acinetobacter indicus, and the ICEPg6Chn1 mobile elements can be transmitted from Proteus genomosp. The plasmid pRCAD0416RA-1 was transferred to Escherichia coli K-12 x 7232 via electroporation. Subsequent antimicrobial sensitivity tests (AST) showed a noticeable levels of antimicrobial resistance to β-lactams (4-8 fold), tigecycline (8 fold), and florfenicol (8 fold). These types of antibiotics are in common clin. use. The purpose of this article is to elucidate the basic characteristics of pRCAD0416RA-1 and the level of resistance mediated by blaOXA-347, floR, and tet(X). This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7COA of Formula: C16H18FN3O3).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Industrial applications of piperazine include the manufacture of plastics, resins, pesticides and brake fluids. Two common salts in the form of which piperazine is usually prepared for pharmaceutical or veterinary purposes are the citrate, 3C4H10N2.2C6H8O7 (i.e. containing 3 molecules of piperazine to 2 molecules of citric acid), and the adipate, C4H10N2.C6H10O4 (containing 1 molecule each of piperazine and adipic acid).COA of Formula: C16H18FN3O3

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Nakamura-Silva, Rafael et al. published their research in Environmental Monitoring and Assessment in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. The piperazine scaffold is often found in biologically active compounds in different therapeutic areas. These therapeutic areas include antifungals, antidepressants, antivirals, and serotonin receptor (5-HT) antagonists/agonists. Intermediate for a wide range of pharmaceuticals, polymers, dyes, corrosion inhibitors, rubber accelerators and surfactants.Category: piperazines

Multidrug-resistant and potentially pathogenic Enterobacteriaceae found in a tertiary hospital sewage in southeastern Brazil was written by Nakamura-Silva, Rafael;Dias, Leila Lucia;Sousa, Ricardo Coelho;Fujimoto, Rodrigo Yudi;Pitondo-Silva, Andre. And the article was included in Environmental Monitoring and Assessment in 2022.Category: piperazines The following contents are mentioned in the article:

Hospital sewage is considered an environment with the potential to favor the spread and increase of multidrug-resistant bacteria (MDR). The increase in antimicrobial resistance is one of the greatest global threats today. Therefore, this study aimed to evaluate the profile of antimicrobial susceptibility and virulence factors in Enterobacteriaceae isolated from the sewage of a tertiary hospital located in southeastern Brazil. For bacterial isolation, membrane filtering, serial dilution, and spread-plate techniques were used. The bacterial isolates were identified using the MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) technique. Antimicrobial susceptibility profile was performed by disk-diffusion test. Virulence genes were screened by Polymerase Chain Reaction (PCR) and the hypermucoviscosity phenotype by string test. In total, 13 enterobacteria distributed in three species were identified (Klebsiella pneumoniae, Escherichia coli, and Citrobacter freundii) and 76.9% (n = 10) were classified as MDR. Two K. pneumoniae demonstrated the hypermucoviscosity phenotype. The virulence genes ycfM and entB were detected in all K. pneumoniae isolates (other genes found were fimH, mrkD, and kfu). The results indicated that the sewage from the analyzed hospital receives MDR bacteria and has the potential to contaminate and spread through the environment. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Category: piperazines).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. The piperazine scaffold is often found in biologically active compounds in different therapeutic areas. These therapeutic areas include antifungals, antidepressants, antivirals, and serotonin receptor (5-HT) antagonists/agonists. Intermediate for a wide range of pharmaceuticals, polymers, dyes, corrosion inhibitors, rubber accelerators and surfactants.Category: piperazines

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Mao, Wenjia et al. published their research in Colloids and Surfaces, A: Physicochemical and Engineering Aspects in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Simple N-substituted piperazines have been found in many drug molecules. Although many piperazine derivatives occur naturally, piperazine itself can be synthesized by reacting alcoholic ammonia with 1,2-dichloroethane, by the action of sodium and ethylene glycol on ethylene diamine hydrochloride, or by reduction of pyrazine with sodium in ethanol.Synthetic Route of C16H18FN3O3

Efficient cobalt-based metal-organic framework derived magnetic Co@C-600 Nanoreactor for peroxymonosulfate activation and oxytetracycline degradation was written by Mao, Wenjia;Wang, Dongsheng;Wang, Xinting;Hu, Xiaoli;Gao, Fengwei;Su, Zhongmin. And the article was included in Colloids and Surfaces, A: Physicochemical and Engineering Aspects in 2022.Synthetic Route of C16H18FN3O3 The following contents are mentioned in the article:

A magnetic carbon material Co@C-600 was fabricated by the in situ thermal conversion of a precursor metal organic frameworks (CUST-563) with structure for peroxymonosulfate (PMS) activation. The composition of the material changes regularly by carbonizing the precursor at different temperatures The Cobalt-based carbon materials with well dispersibility were obtained by carbonizing MOF, which avoided aggregation and exposed more active sites. The reaction parameters (catalyst content, PMS dosage, temperature, pH value, etc.) in the oxytetracycline (OTC) degradation process had been investigated. The degradation rate of OTC (20 mg/L) in 15 min reached more than 89%. According to the ESR (EPR) test results, the degradation process was carried out by the synergistic effect of two degradation mechanisms: free radicals (SO4·-,·OH) and non-radicals (1O2) process, and Co0 acts as the initiator of the free radical reaction. It proved that the synthesized efficient nanocarbon-based Co@C-600 was equipped with highly stability and reusability after 10 cycles experiments This work studied the difference in the crystal at composition after calcining crystal at various temperatures and the mechanism of activation of PMS, which provided a design idea about the preparation of high-efficiency catalytic materials. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Synthetic Route of C16H18FN3O3).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Simple N-substituted piperazines have been found in many drug molecules. Although many piperazine derivatives occur naturally, piperazine itself can be synthesized by reacting alcoholic ammonia with 1,2-dichloroethane, by the action of sodium and ethylene glycol on ethylene diamine hydrochloride, or by reduction of pyrazine with sodium in ethanol.Synthetic Route of C16H18FN3O3

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Jing, Fanqi et al. published their research in Environmental Pollution (Oxford, United Kingdom) in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. The piperazine scaffold is often found in biologically active compounds in different therapeutic areas. These therapeutic areas include antifungals, antidepressants, antivirals, and serotonin receptor (5-HT) antagonists/agonists. Piperazine and its salts did not induce point mutations in a bacterial test. A series of mutagenicity studies in cells, both in vitro and in vivo, has been completed and showed no evidence of mutagenic effect.Computed Properties of C16H18FN3O3

Mechanistic insight into adsorptive removal of ionic NOR and nonionic DEP organic contaminates by clay-biochar composites was written by Jing, Fanqi;Guan, Junjie;Tang, Wei;Chen, Jiawei. And the article was included in Environmental Pollution (Oxford, United Kingdom) in 2022.Computed Properties of C16H18FN3O3 The following contents are mentioned in the article:

The synthesis of clay-biochar composite has been recognized as an effective way to enhance the removal of pollutants. The interaction between clay mineral and biomass during thermal pyrolysis and the sorption capacity for ionic/nonionic organic containments have not been elaborated. In this study, two types of biochar were obtained from pyrolytic carbonization of the cellulosic-rich corn straw (C) and lignin-rich pine wood (P) at 500 or 700°C. Typical clay minerals kaolinite and montmorillonite were selected to prepare clay-biochar composite. The results showed that the addition of clay mineral could strengthen dehydration reaction of corn straw biomass and reinforce its carbon structure. Montmorillonite-biochar composite owned more C=C functional groups and porous structure than kaolinite-biochar composite. The addition of clay minerals could promote electrostatic attraction of ionic formed norfloxacin (NOR) on clay-pine wood biochar. However, the sorption capacity of nonionic di-Et phthalate (DEP) adsorption on clay-corn straw biochar decreased, owing to that clay increased the compactness of the biochar carbon structure, thus inhabited hydrophobic partition of nonionic organic compounds on disordered carbon fraction. The results from this study provide insights into the suitable contaminated site remediation by clay-biochar composite. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Computed Properties of C16H18FN3O3).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. The piperazine scaffold is often found in biologically active compounds in different therapeutic areas. These therapeutic areas include antifungals, antidepressants, antivirals, and serotonin receptor (5-HT) antagonists/agonists. Piperazine and its salts did not induce point mutations in a bacterial test. A series of mutagenicity studies in cells, both in vitro and in vivo, has been completed and showed no evidence of mutagenic effect.Computed Properties of C16H18FN3O3

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Sun, Changshun et al. published their research in Journal of Hazardous Materials in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine was first introduced as an anthelmintic in 1953. Piperazine compounds mediate their anthelmintic action by generally paralyzing parasites, allowing the host body to easily remove or expel the invading organism. Piperazines are very broad chemical group, covering a wide range of drugs from antidepressants to antihistamines. The connecting property of all these chemicals is the presence of a piperazine functional group.Quality Control of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid

Spatial distribution and risk assessment of certain antibiotics in 51 urban wastewater treatment plants in the transition zone between North and South China was written by Sun, Changshun;Hu, En;Liu, Siwan;Wen, Ling;Yang, Fang;Li, Ming. And the article was included in Journal of Hazardous Materials in 2022.Quality Control of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid The following contents are mentioned in the article:

The release of antibiotics from WWTPs into the environment has raised increasing concern worldwide. The monitoring of antibiotics in WWTPs throughout a region is crucial for emerging pollutant management. A large-scale survey of the occurrence, distribution, and ecol. risk of seven antibiotics in 51 WWTPs was conducted in Shaanxi Province, China. Norfloxacin and ofloxacin had the highest detection concentrations of 474.2 and 656.18 ng L-1, resp. Antibiotic residues in effluents were decreased by 5.88-94.16% after different treatment processes. In particular, A2O or mixed processes performed well in removing target antibiotic compounds simultaneously. The ecol. risk posed by antibiotic compounds detected in effluents was calculated using the risk quotient (RQ). Norfloxacin, ofloxacin, tetracycline, and roxithromycin posed different levels of potential ecotoxicol. risk (RQ = 0.02-7.59). Based on the sum of the RQ values of individual antibiotic compounds, each investigated WWTP showed potential ecol. risk. WWTPs with high risk levels were mainly found in the central region, while those in the southern region exhibited low risk levels, and those in the northern region showed risk levels between medium and high. This comprehensive investigation provides promising results to support the safe use and control of antibiotics in the study area. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Quality Control of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine was first introduced as an anthelmintic in 1953. Piperazine compounds mediate their anthelmintic action by generally paralyzing parasites, allowing the host body to easily remove or expel the invading organism. Piperazines are very broad chemical group, covering a wide range of drugs from antidepressants to antihistamines. The connecting property of all these chemicals is the presence of a piperazine functional group.Quality Control of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Yang, Ni et al. published their research in Spectrochimica Acta in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine causes primary dermal irritation and skin burns at high concentrations. Piperazine also causes eye irritation in humans. Outside the body, piperazine has a remarkable power to dissolve uric acid and producing a soluble urate, but in clinical experience it has not proved equally successful. Product Details of 70458-96-7

A lead-free Cs2ZnCl4 perovskite nanocrystals fluorescent probe for highly selective detection of norfloxacin was written by Yang, Ni;Wen, Qiu-Lin;Fu, Yan-Bo;Long, Li-Fei;Liao, Yan-Ju;Hou, Shi-Bo;Qian, Peng;Liu, Peng;Ling, Jian;Cao, Qiue. And the article was included in Spectrochimica Acta in 2022.Product Details of 70458-96-7 The following contents are mentioned in the article:

The abuse of antibiotics would seriously affect human health and has become of worldwide critical concern, thus it is urgent to develop an environmentally friendly and nontoxic fluorescent probe for antibiotics sensing. In this work, a lead-free Cs2ZnCl4 perovskite nanocrystals (PNCs) probe was fabricated for sensing norfloxacin (NOR) employing a modified ligand-assisted reprecipitation method. The prepared Cs2ZnCl4 PNCs probe had strong blue emission around 440 nm, and the characteristics of PNCs were systematically characterized by X-ray photoelec. spectroscopy (XPS), Fourier transforms IR spectroscopy (FTIR), transmission electron microscope (TEM) and powder X-ray diffraction (XRD). The results revealed that the fluorescence intensity of the Cs2ZnCl4 PNCs was significantly enhanced after the introduction of norfloxacin. The Cs2ZnCl4 PNCs can be used as a fluorescent probe to selectively and sensitively detect norfloxacin in the concentration range from 0.2 to 50.0 μM, with a correlation coefficient (R2) of 0.9954 and the limit of detection (LOD, 3σ) of 0.1499 μM. The preparation and application of a lead-free perovskite fluorescent probe for norfloxacin would promote the application of perovskite fluorescent probes in biochem. assays. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Product Details of 70458-96-7).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine causes primary dermal irritation and skin burns at high concentrations. Piperazine also causes eye irritation in humans. Outside the body, piperazine has a remarkable power to dissolve uric acid and producing a soluble urate, but in clinical experience it has not proved equally successful. Product Details of 70458-96-7

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Wu, Yanqi et al. published their research in Science of the Total Environment in 2023 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine was first introduced as an anthelmintic in 1953. Piperazine compounds mediate their anthelmintic action by generally paralyzing parasites, allowing the host body to easily remove or expel the invading organism. Two common salts in the form of which piperazine is usually prepared for pharmaceutical or veterinary purposes are the citrate, 3C4H10N2.2C6H8O7 (i.e. containing 3 molecules of piperazine to 2 molecules of citric acid), and the adipate, C4H10N2.C6H10O4 (containing 1 molecule each of piperazine and adipic acid).Synthetic Route of C16H18FN3O3

Source-specific ecological risks and critical source identification of PPCPs in surface water: Comparing urban and rural areas was written by Wu, Yanqi;Song, Shuai;Chen, Xinchuang;Shi, Yajuan;Cui, Haotian;Liu, Ying;Yang, Shengjie. And the article was included in Science of the Total Environment in 2023.Synthetic Route of C16H18FN3O3 The following contents are mentioned in the article:

To control the concentrations of pharmaceutical and personal care products (PPCPs) in the surface water of urban and rural areas, it is important to explore the spatial variation in source-specific ecol. risks and identify critical sources. Here, we focused on 22 PPCPs found in the effluent from wastewater treatment plants and surface water in Tianjin, and source-specific risk was quant. apportioned combining pos. matrix factorization with ecol. risk assessment. Results showed that rural areas exhibited a more severe contamination level than urban areas. Medical wastewater (30.1%) accounted for the highest proportion, while domestic sewage posed the greatest threat to aquatic ecosystems. The incidence of potential risks (RQ > 0.01) caused by domestic sewage in urban areas (88.9%) was higher than that in rural areas (75.9%). However, PPCP risks caused by farmland drainage, aquaculture, and livestock discharge were mainly distributed in rural areas. The critical source identified in the entire region was domestic sewage (weight, 0.36), and its weight (0.51) in urban areas was greater than that in rural areas (0.32). The impact of aquaculture (weight, 0.16) in rural areas was noteworthy. These findings may contribute to developing environmental management strategies in key areas to help alleviate PPCP contamination worldwide. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Synthetic Route of C16H18FN3O3).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine was first introduced as an anthelmintic in 1953. Piperazine compounds mediate their anthelmintic action by generally paralyzing parasites, allowing the host body to easily remove or expel the invading organism. Two common salts in the form of which piperazine is usually prepared for pharmaceutical or veterinary purposes are the citrate, 3C4H10N2.2C6H8O7 (i.e. containing 3 molecules of piperazine to 2 molecules of citric acid), and the adipate, C4H10N2.C6H10O4 (containing 1 molecule each of piperazine and adipic acid).Synthetic Route of C16H18FN3O3

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Sanguanpak, Samunya et al. published their research in Chemosphere in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine was first introduced as an anthelmintic in 1953. Piperazine compounds mediate their anthelmintic action by generally paralyzing parasites, allowing the host body to easily remove or expel the invading organism. Intermediate for a wide range of pharmaceuticals, polymers, dyes, corrosion inhibitors, rubber accelerators and surfactants.Safety of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid

TiO2-immobilized porous geopolymer composite membrane for removal of antibiotics in hospital wastewater was written by Sanguanpak, Samunya;Shongkittikul, Witaya;Saengam, Chitsuphang;Chiemchaisri, Wilai;Chiemchaisri, Chart. And the article was included in Chemosphere in 2022.Safety of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid The following contents are mentioned in the article:

This exptl. research proposes an environment-friendly and low-cost porous geopolymer composite membrane (PGCM) to treat antibiotics in hospital wastewater. The proposed PGCM consisted of two layers: a porous support layer and a dense coating layer. The dense coating layer was synthesized by incorporating variable TiO2 content (0, 2, 6, and 10 wt%) into the geopolymer matrix. The dense coating layer was of hierarchical mesoporous structure with 700μm in thickness and adhered to the porous support layer. The average pore size, total pore volume, and open porosity of the dense coating layer decreased with an increase in TiO2, resulting in reduced water permeability. The PGCM was applied to remove six target antibiotics including amoxicillin, ciprofloxacin, norfloxacin, sulfamethoxazole, tetracycline, and trimethoprim in real hospital wastewater. By comparison, the PGCM with 10 wt% TiO2 achieved the highest antibiotic removal efficiencies, with the adsorption and combined adsorption/photodegradation removal efficiencies for the target antibiotics of 38-75% and 74-86%, resp. The novelty of this research lies in the use of a tailor-made porous geopolymer composite membrane incorporated with TiO2 photooxidation as a single-step treatment of recalcitrant antibiotics contained in hospital wastewater. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Safety of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine was first introduced as an anthelmintic in 1953. Piperazine compounds mediate their anthelmintic action by generally paralyzing parasites, allowing the host body to easily remove or expel the invading organism. Intermediate for a wide range of pharmaceuticals, polymers, dyes, corrosion inhibitors, rubber accelerators and surfactants.Safety of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics