Cai, Mingjie et al. published their research in Journal of Colloid and Interface Science in 2023 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine is a fairly basic compound and is an amine solvent. Two common salts in the form of which piperazine is usually prepared for pharmaceutical or veterinary purposes are the citrate, 3C4H10N2.2C6H8O7 (i.e. containing 3 molecules of piperazine to 2 molecules of citric acid), and the adipate, C4H10N2.C6H10O4 (containing 1 molecule each of piperazine and adipic acid).Product Details of 70458-96-7

A novel S-scheme heterojunction of Cd0.5Zn0.5S/BiOCl with oxygen defects for antibiotic norfloxacin photodegradation: Performance, mechanism, and intermediates toxicity evaluation was written by Cai, Mingjie;Liu, Yanping;Dong, Kexin;Wang, Chunchun;Li, Shijie. And the article was included in Journal of Colloid and Interface Science in 2023.Product Details of 70458-96-7 The following contents are mentioned in the article:

S-scheme heterojunction structure can endow the photocatalysts with high-performance photo-degradation of pharmaceuticals and personal care products (PPCPs) since it can remain the photogenerated electrons/holes with stronger redox ability. Herein, an integrative S-scheme heterojunction photocatalyst building from Cd0.5Zn0.5S nanoparticles and BiOCl microflowers with oxygen vacancies (OVs) was developed. Moreover, the in-situ grown process ensures the firm contact and intense electron coupling between BiOCl and Cd0.5Zn0.5S. As a result, Cd0.5Zn0.5S/BiOCl exhibited a significant reinforcement of photo-activity and stability for the abatement of antibiotic norfloxacin, manifesting a 2.8-fold or 9.6-fold enhancement compared to pristine Cd0.5Zn0.5S or BiOCl. Cd0.5Zn0.5S/BiOCl also shows good resistance to alk., sodium salts and humic acid. The performance of Cd0.5Zn0.5S/BiOCl to photocatalytically degrade other PPCPs with different mol. structures was further confirmed. At last, the ability of Cd0.5Zn0.5S/BiOCl for PPCPs de-toxicity was verified by evaluating the toxicity of norfloxacin and its degradation intermediate. This study demonstrates a new S-scheme heterojunction photocatalyt for efficient removal of PPCPs as well as provides some insights into developing high-performance metal sulfide solid-solution-based S-scheme heterojunctions for water decontamination. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Product Details of 70458-96-7).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine is a fairly basic compound and is an amine solvent. Two common salts in the form of which piperazine is usually prepared for pharmaceutical or veterinary purposes are the citrate, 3C4H10N2.2C6H8O7 (i.e. containing 3 molecules of piperazine to 2 molecules of citric acid), and the adipate, C4H10N2.C6H10O4 (containing 1 molecule each of piperazine and adipic acid).Product Details of 70458-96-7

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Ding, Yan et al. published their research in Chemosphere in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Industrial applications of piperazine include the manufacture of plastics, resins, pesticides and brake fluids. Piperazines are very broad chemical group, covering a wide range of drugs from antidepressants to antihistamines. The connecting property of all these chemicals is the presence of a piperazine functional group.Reference of 70458-96-7

A high-precision prediction for spatiotemporal distribution and risk assessment of antibiotics in an urban watershed using a hydrodynamic model was written by Ding, Yan;Liu, Xiaowei;Qin, Xiaodong;Chen, Yihan;Cui, Kangping. And the article was included in Chemosphere in 2022.Reference of 70458-96-7 The following contents are mentioned in the article:

A methodol. for the high-precision prediction and risk assessment of antibiotics at the watershed scale was established. Antibiotic emission inventory and attenuation processes were integrated into the MIKE 11 model to predict the spatiotemporal distribution of norfloxacin, ofloxacin, enrofloxacin, erythromycin, roxithromycin, and sulfamethoxazole in the Nanfei River watershed, China. Considering the variations in antibiotic removal in sewage treatment plants, manure composting, and lagoon systems, the high, medium, and low removal efficiencies of selected antibiotics across China were obtained and used as the best, expected, and worst scenarios, resp., to evaluate the uncertainty of antibiotic emissions. The predicted concentrations were comparable to antibiotic measurements after flow calibration. The prediction results showed that the highest concentration exposures were mainly concentrated in urban areas with a dense population. Flow variations controlled the temporal distribution characteristics of antibiotics via the dilution effect, and the concentrations of antibiotics in the dry season were 3.1 times higher than those in the wet season. The median concentrations of norfloxacin and erythromycin ranged from 111.36 ng/L to 592.33 ng/L and 106.63 ng/L to 563.01 ng/L, resp., which both posed a high risk to cyanobacteria and a medium risk to spreading antibiotic resistance. Scenario anal. further demonstrated that high removal efficiencies of these antibiotics can considerably reduce the potential ecotoxicity risks and bacterial resistance selection. The developed methodol. for predicting the distribution and risk of antibiotics was suitable for the risk assessment and control strategy of human- and livestock-sourced pollutants. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Reference of 70458-96-7).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Industrial applications of piperazine include the manufacture of plastics, resins, pesticides and brake fluids. Piperazines are very broad chemical group, covering a wide range of drugs from antidepressants to antihistamines. The connecting property of all these chemicals is the presence of a piperazine functional group.Reference of 70458-96-7

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Deng, Yuqi et al. published their research in Chemosphere in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Simple N-substituted piperazines have been found in many drug molecules. Although many piperazine derivatives occur naturally, piperazine itself can be synthesized by reacting alcoholic ammonia with 1,2-dichloroethane, by the action of sodium and ethylene glycol on ethylene diamine hydrochloride, or by reduction of pyrazine with sodium in ethanol.Application In Synthesis of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid

Efficient degradation of norfloxacin by carbonized polydopamine-decorated g-C3N4 activated peroxymonosulfate: Performance and mechanism was written by Deng, Yuqi;Liu, Shaobo;Liu, Yunguo;Tang, Yetao;Dai, Mingyang;Chen, Qiang;Wang, Huan. And the article was included in Chemosphere in 2022.Application In Synthesis of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid The following contents are mentioned in the article:

The use of metal-free graphite carbon nitride (CN) to activate peroxymonosulfate (PMS) has attracted extensive attention for organic pollutants degradation In this work, we prepared carbonized polydopamine-decorated g-C3N4 (CP-700) for activation of PMS to degrade norfloxacin (NOR). The CP-700 composite was obtained by using CN as a base material on which dopamine underwent an autopolymn. reaction to form a CN-PDA complex, followed by pyrolysis. The apparent porous structure and graphitization provided a large number of active sites for catalytic degradation, enabling CP-700 to exhibit excellent catalytic performance during PMS activation. The degradation of NOR was not hindered by sulfate radical (SO·-4) and hydroxyl radical (·OH). Singlet oxygen (1O2) and mediated electron transfer were ultimately identified as the primary mechanisms. According to the linear pos. correlation (R2 = 0.9922) between the semi-quant. carbonyl group (C=O) and the reaction rate constant, it was determined that the carbonyl group served as the important active site. The excellent electron transfer ability of CP-700 was evidenced by electrochem. techniques and the electron transfer pathway in the system was that PMS was adsorbed on the CP-700 surface to form metastable complex, and then the electron transfer between NOR and metastable complex was achieved. Based on the non-radical pathway, CP-700/PMS system showed a high tolerance to solution pH (3.0-11.0) and inorganic anions. The cyclic degradation experiments indicated that the system maintained a high degradation capability without the addition of addnl. CP-700, elucidating its potential application in the degradation of organic pollutants in the water. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Application In Synthesis of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Simple N-substituted piperazines have been found in many drug molecules. Although many piperazine derivatives occur naturally, piperazine itself can be synthesized by reacting alcoholic ammonia with 1,2-dichloroethane, by the action of sodium and ethylene glycol on ethylene diamine hydrochloride, or by reduction of pyrazine with sodium in ethanol.Application In Synthesis of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Sivaprakash, Baskaran et al. published their research in Chemosphere in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine was first introduced as an anthelmintic in 1953. Piperazine compounds mediate their anthelmintic action by generally paralyzing parasites, allowing the host body to easily remove or expel the invading organism. Although many piperazine derivatives occur naturally, piperazine itself can be synthesized by reacting alcoholic ammonia with 1,2-dichloroethane, by the action of sodium and ethylene glycol on ethylene diamine hydrochloride, or by reduction of pyrazine with sodium in ethanol.Product Details of 70458-96-7

Techniques for remediation of pharmaceutical pollutants using metal organic framework – Review on toxicology, applications, and mechanism was written by Sivaprakash, Baskaran;Rajamohan, Natarajan;Singaramohan, Dhanapriya;Ramkumar, Vanaraj;Elakiya, B. Tamil. And the article was included in Chemosphere in 2022.Product Details of 70458-96-7 The following contents are mentioned in the article:

A review. Treatment of recalcitrant and xenobiotic pharmaceutical compounds in polluted waters have gained significant attention of the environmental scientists. Antibiotics are diffused into the environment widely owing to their high usages, very particularly in the last two years due to over consumption during covid 19 pandemic worldwide. Quinolones are very effective antibiotics, but do not get completely metabolized due to which they pose severe health hazards if discharged without proper treatment. The commonly reported treatment methods for quinolones are adsorption and advanced oxidation methods. In both the treatment methods, metal organic frameworks (MOF) have been proved to be promising materials used as stand-alone or combined technique. Many composite MOF materials synthesized from renewable, natural, and harmless materials by eco-friendly techniques have been reported to be effective in the treatment of quinolones. In the present article, special focus is given on the abatement of norfloxacin and ofloxacin contaminated wastewater using MOFs by adsorption, oxidation/ozonation, photocatalytic degradation, electro-fenton methods, etc. However, integration of adsorption with any advanced oxidation methods was found to be best remediation technique. Of various MOFs reported by several researchers, the MIL-101(Cr)-SO3H composite was able to give 99% removal of norfloxacin by adsorption. The MIL – 88A(Fe) composite and Fe LDH carbon felt cathode were reported to yield 100% degradation of ofloxacin by photo-Fenton and electro-fenton methods resp. The synthesis methods and mechanism of action of MOFs towards the treatment of norfloxacin and ofloxacin as reported by several investigation reports are also presented. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Product Details of 70458-96-7).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine was first introduced as an anthelmintic in 1953. Piperazine compounds mediate their anthelmintic action by generally paralyzing parasites, allowing the host body to easily remove or expel the invading organism. Although many piperazine derivatives occur naturally, piperazine itself can be synthesized by reacting alcoholic ammonia with 1,2-dichloroethane, by the action of sodium and ethylene glycol on ethylene diamine hydrochloride, or by reduction of pyrazine with sodium in ethanol.Product Details of 70458-96-7

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Barbayanov, Kirill et al. published their research in Talanta in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Industrial applications of piperazine include the manufacture of plastics, resins, pesticides and brake fluids. Outside the body, piperazine has a remarkable power to dissolve uric acid and producing a soluble urate, but in clinical experience it has not proved equally successful. SDS of cas: 70458-96-7

An effervescence-assisted dispersive liquid-liquid microextraction based on three-component deep eutectic solvent for the determination of fluoroquinolones in foods was written by Barbayanov, Kirill;Timofeeva, Irina;Bulatov, Andrey. And the article was included in Talanta in 2022.SDS of cas: 70458-96-7 The following contents are mentioned in the article:

An effervescence-assisted dispersive liquid-liquid microextraction approach using three-component deep eutectic solvent based on short-chain and medium-chain carboxylic acids and terpenoid was developed for the first time. The microextraction procedure was applied to the determination of fluoroquinolone antibiotics in foods (milk and shrimp samples) by high-performance liquid chromatog. with fluorometric detection. In this microextraction procedure three-component deep eutectic solvent acted as a proton donor agent and an extractant. The carbon dioxide bubbles caused by the fast reaction between precursor of deep eutectic solvent (short-chain carboxylic acid) and effervescent agent (sodium carbonate) promoted the dispersion of the extractant in an aqueous sample phase. Various carboxylic acids were studied as hydrogen bond donors for the formation of deep eutectic solvents and proton donor agents for the generation of CO2 bubbles. Two natural terpenoids (menthol and thymol) were studied as the hydrogen bond acceptors for the formation of three-component solvent. The extraction system based on heptanoic acid and thymol (1:2, mol/mol) containing formic acid (proton donor for generating CO2 bubbles) provided maximum extraction recovery (86-99%) and a higher extraction efficiency of analytes compared to their extraction into individual hydrophobic precursors of the system. The LODs, calculated from the blank tests based on 3σ, were varied from 0.03 to 0.06μg L-1 and from 0.3 to 0.6μg kg-1 for fluoroquinolone antibiotics in milk and shrimp samples, resp. The proposed approach provided effective dispersion of extractant speeding up the extraction process and fast separation of phases without any external energy assistance. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7SDS of cas: 70458-96-7).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Industrial applications of piperazine include the manufacture of plastics, resins, pesticides and brake fluids. Outside the body, piperazine has a remarkable power to dissolve uric acid and producing a soluble urate, but in clinical experience it has not proved equally successful. SDS of cas: 70458-96-7

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Li, Pu et al. published their research in Science of the Total Environment in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Industrial applications of piperazine include the manufacture of plastics, resins, pesticides and brake fluids. Although many piperazine derivatives occur naturally, piperazine itself can be synthesized by reacting alcoholic ammonia with 1,2-dichloroethane, by the action of sodium and ethylene glycol on ethylene diamine hydrochloride, or by reduction of pyrazine with sodium in ethanol.Safety of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid

Antibiotics in wastewater of Guangdong, China: distribution patterns, and their environmental risk due to incomplete removal was written by Li, Pu;Wang, Yuru;Huang, Bi;Guan, Shengqi;Luan, Tiangang;Lin, Ge;Yuan, Ke. And the article was included in Science of the Total Environment in 2022.Safety of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid The following contents are mentioned in the article:

In this study, the occurrence, removal, spatial distribution and environmental risks of ten antibiotics in 38 wastewater treatment plants (WWTPs) which located in 15 communities (in 12 cities) of the Guangdong province, China. The results indicated that amoxicillin (AMO, 381.00-5230.00 ng·L-1) and ofloxacin (OFX, 7.01-836.00 ng·L-1) were predominant in the province with high detection rates (100 %) and high concentrations The concentration of norfloxacin (NFX) was high in some influents (2070.00 ng·L-1), but its detection rate was only 47.4 %. In addition, the average daily mass load per 103 capita (ADMLpc) of AMO (383.34 mg·(103 capita)-1·d-1) was significantly higher than the other antibiotics. The comparison between the ADMLpc and social-economic factors indicated that adult (age between 18 and 60) was the age group mainly consume antibiotics in the province. Furthermore, the ADMLpc of human antibiotics (e.g., AMO and OFX) were pos. affected by the economic development of the region. Comparatively, the ADMLpc veterinary antibiotic (e.g., SMM) was pos. related to the livestock related factors. In general, no significant difference (p > 0.05) in antibiotic removal efficiencies among four treatment processes applied in all WWTPs. Nevertheless, the low removal rates of sulfamethazine (SMZ, 44.6 %) and OFX (26.3 %) indicated that they were more difficult to be removed than other antibiotics. Furthermore, high ADMLpc of antibiotics in the influent would cause high ADMLpc in effluents. Therefore, heavy consumption of antibiotics could pose high risk to the ecosystem, especially when multiple antibiotics appeared in the effluent of the WWTPs. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Safety of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Industrial applications of piperazine include the manufacture of plastics, resins, pesticides and brake fluids. Although many piperazine derivatives occur naturally, piperazine itself can be synthesized by reacting alcoholic ammonia with 1,2-dichloroethane, by the action of sodium and ethylene glycol on ethylene diamine hydrochloride, or by reduction of pyrazine with sodium in ethanol.Safety of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Guo, Yuwei et al. published their research in Frontiers of Environmental Science & Engineering in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine is a fairly basic compound and is an amine solvent. Piperazine is an anthelminthic especially useful in the treatment of partial intestinal obstruction caused by Ascaris worms, which is a condition primarily seen in children. Piperazine hydrate and piperazine citrate are the main anthelminthic piperazines.Safety of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid

Antibiotic resistance genes in manure-amended paddy soils across eastern China: Occurrence and influencing factors was written by Guo, Yuwei;Xiao, Xian;Zhao, Yuan;Liu, Jianguo;Zhou, Jizhong;Sun, Bo;Liang, Yuting. And the article was included in Frontiers of Environmental Science & Engineering in 2022.Safety of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid The following contents are mentioned in the article:

Pig manure, rich in antibiotics and metals, is widely applied in paddy fields as a soil conditioner, triggering the proliferation of antibiotic resistance genes (ARGs) in soil. However, comprehensive studies on the effects of manure fertilization on the abundance of ARGs and their influencing factors are still insufficient. Here, pig manure and manure-amended and inorganic-amended soils were collected from 11 rice-cropping regions in eastern China, and the accumulation of antibiotics, metals, and ARGs was assessed simultaneously. The results showed that manure fertilization led to antibiotic residues and increased the metal content (i.e., Zn, Cu, Ni, and Cr). Tetracycline and sulfonamide resistance genes (tetM, tetO, sul1, and sul2) were also significantly enhanced with manure fertilization. According to variance partitioning anal., the most important factors that individually influenced ARGs were soil physicochem. properties, accounting for 12% of the variation. Significant correlations between soil nutrients and ARGs indicated that manure application enhanced the growth of resistant microorganisms by supplying more nutrients. Metals and antibiotics contributed 9% and 5% to the variations in ARGs, resp. Their co-occurrence also increased the enrichment of ARGs, as their interactions accounted for 2% of the variation in ARGs. Interestingly, Cu was significantly related to most ARGs in the soil (r = 0.26-0.52, p < 0.05). Sulfapyridine was significantly related to sul2, and tetracycline resistance genes were pos. related to doxycycline. This study highlighted the risks of antibiotic and ARG accumulation with manure fertilization and shed light on the essential influencing factors of ARGs in paddy soils. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Safety of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine is a fairly basic compound and is an amine solvent. Piperazine is an anthelminthic especially useful in the treatment of partial intestinal obstruction caused by Ascaris worms, which is a condition primarily seen in children. Piperazine hydrate and piperazine citrate are the main anthelminthic piperazines.Safety of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Liu, Lili et al. published their research in Chemosphere in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine causes primary dermal irritation and skin burns at high concentrations. Piperazine also causes eye irritation in humans. Intermediate for a wide range of pharmaceuticals, polymers, dyes, corrosion inhibitors, rubber accelerators and surfactants.Product Details of 70458-96-7

Deep oxidation of norfloxacin by the electrochemical enhanced heterogeneous catalytic oxidation: The role of electric field and reaction optimization was written by Liu, Lili;Zhan, Rui;Zhang, Yunxiao;Zhang, Meng;Wang, Zhiping;Li, Jianan. And the article was included in Chemosphere in 2022.Product Details of 70458-96-7 The following contents are mentioned in the article:

In this study, electrochem. (ECG-G: graphite anode and cathode, ECI-G: iron anode and graphite cathode) enhanced heterogeneous activation of peroxymonosulfate (PMS) by CoFe2O4nanoparticles for the degradation of norfloxacin (NOR) in water was investigated. Although a higher NOR removal efficiency was achieved in ECI-G/CoFe2O4/PMS system, the generation of Fe3+ had resulted in the deposition of iron mud and affect the recovery of CoFe2O4. Under the optimum reaction conditions of CoFe2O4/PMS system, the final removal efficiency of NOR did not show significant difference in ECG-G/CoFe2O4/PMS system (96.0%) and CoFe2O4/PMS system (95.5%), but the value of apparent rate constant significantly increased in ECG-G/CoFe2O4/PMS system (0.21 min-1) compared with CoFe2O4/PMS system (0.11 min-1). Similar NOR degradation pathways were obtained in these two systems, and the TOC removal efficiency in ECG-G/CoFe2O4 /PMS system (28.8%) is almost as low as CoFe2O4/PMS system (26.0%). Therefore, it can be proposed that the applied elec. field through active electrodes can accelerate the reaction of heterogeneous catalytic oxidation, but does not participate much in NOR degradation However, the TOC removal efficiency (30 min) could be reached 68.7% as the mass ratio of PMS to CoFe2O4 increased to 5:1 (250 mg L-1: 50 mg L-1). The ECG-G/CoFe2O4/PMS system is a promising low-cost technique for efficient mineralization of antibiotics in wastewater. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Product Details of 70458-96-7).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine causes primary dermal irritation and skin burns at high concentrations. Piperazine also causes eye irritation in humans. Intermediate for a wide range of pharmaceuticals, polymers, dyes, corrosion inhibitors, rubber accelerators and surfactants.Product Details of 70458-96-7

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Huang, Yiquan et al. published their research in Science of the Total Environment in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Simple N-substituted piperazines have been found in many drug molecules. Two common salts in the form of which piperazine is usually prepared for pharmaceutical or veterinary purposes are the citrate, 3C4H10N2.2C6H8O7 (i.e. containing 3 molecules of piperazine to 2 molecules of citric acid), and the adipate, C4H10N2.C6H10O4 (containing 1 molecule each of piperazine and adipic acid).HPLC of Formula: 70458-96-7

In vivo environmental metabolomic profiling via a novel microextraction fiber unravels sublethal effects of environmental norfloxacin in gut bacteria was written by Huang, Yiquan;Fang, Shuting;Xiang, Zhangmin;Liu, Shuqin;Ouyang, Gangfeng. And the article was included in Science of the Total Environment in 2022.HPLC of Formula: 70458-96-7 The following contents are mentioned in the article:

Emerging contaminants (ECs), especially antibiotics, have significantly polluted the environment and threaten the living circumstance of organisms. Environmental metabolomic has emerged to investigate the sublethal effects of ECs. However, lacking noninvasive and real-time sample pretreatment techniques restricts its development in environmental toxicol. Hence, in this study, a real-time and in vivo untargeted anal. technique towards microbial endogenous metabolites was developed via a novel composite solid-phase microextraction (SPME) fiber of ZIF-67 and polystyrene to realize the high-coverage capture of living gut microbial metabolites. To reveal the exposure risks of typical antibiotic – norfloxacin (NFX) to gut bacteria, four representative bacteria were exposed to NFX at environmentally relevant levels. Using the proposed SPME fiber, 70 metabolites were identified to obtain an apparent metabolic separation feature between control and NFX-treated (10 ng/mL) microbial groups, which revealed that the low environmental relevant concentration of NFX would affect normal metabolism of gut bacteria. Addnl., NFX exhibited species-specific toxic effects on microbial growth, especially Escherichia coli displaying a distinct dose-dependent trend. Antioxidative enzymic activities results demonstrated that beneficial bacteria maintained the state of oxidative stress while symbiotic bacteria suffered from oxidative stress injury under NFX contamination, further corroborating its impact on human intestinal health. This study highlights the suitability of in vivo SPME in the field of metabolite extraction and simultaneously possesses a brilliant application foreground in the environmental metabolomics. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7HPLC of Formula: 70458-96-7).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Simple N-substituted piperazines have been found in many drug molecules. Two common salts in the form of which piperazine is usually prepared for pharmaceutical or veterinary purposes are the citrate, 3C4H10N2.2C6H8O7 (i.e. containing 3 molecules of piperazine to 2 molecules of citric acid), and the adipate, C4H10N2.C6H10O4 (containing 1 molecule each of piperazine and adipic acid).HPLC of Formula: 70458-96-7

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Kang, Li et al. published their research in Journal of Colloid and Interface Science in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Industrial applications of piperazine include the manufacture of plastics, resins, pesticides and brake fluids. Outside the body, piperazine has a remarkable power to dissolve uric acid and producing a soluble urate, but in clinical experience it has not proved equally successful. Name: 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid

Insight into the existent state of nitrogen-doped carbon dots in titanate nanotubes and their roles played toward simultaneous removal of coexisted Cu2+ and norfloxacin in water was written by Kang, Li;Yang, Hanpei;Yu, Haibo;Wu, Qiangshun. And the article was included in Journal of Colloid and Interface Science in 2022.Name: 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid The following contents are mentioned in the article:

In this work, nitrogen-doped carbon dots (NCDs) were introduced in different existent sites of titanate nanotubes (TNTs) by a facile synthesis, and their effects on surface potential, photoelectrochem. properties and simultaneous removal of coexisted Cu2+ and norfloxacin (NOR) performance in water were systematically investigated. Constructed NCDs-TNTs composite displayed superior performance towards the adsorption (ion exchange/coordination) of Cu2+ and adsorption-oxidization of NOR over the two individuals, mainly benefiting from the collaboration of NCDs in different existent states. The existence of Ti-N-H chem. linkage was identified between TNTs and NCDs-OT (NCDs on the outer surface of TNTs), which not only modulates the surface potential to favor the external diffusion of Cu 2+ or NOR+ from aqueous solution to the neg. charged NCDs-TNTs, but also facilitates the intraparticle transfer of contaminants to the reactive sites. In addition, the up-conversion light property of NCDs-OT and the interstitial NCDs-IT (NCDs on the inner surface of TNTs) doping in TNTs interact together to enable NCDs-IT-TNTs to fully absorb and utilize all visible light. The photoexcited electrons were further trapped by NCDs-OT to promote the photogenerated carrier separation Adsorbed Cu2+ could also improve the performance of NCDs-TNTs toward NOR oxidization, mainly owing to the self-synchronous doping of adsorbed Cu 2+ broadening light absorption area and acting as mediators for delivering electrons. This work provides unique insights into the structural design of composite materials for such combined contamination remediation in water. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Name: 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Industrial applications of piperazine include the manufacture of plastics, resins, pesticides and brake fluids. Outside the body, piperazine has a remarkable power to dissolve uric acid and producing a soluble urate, but in clinical experience it has not proved equally successful. Name: 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics