Yang, Jie et al. published their research in Scientific Reports in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine belongs to the family of medicines called anthelmintics. Piperazine is an anthelminthic especially useful in the treatment of partial intestinal obstruction caused by Ascaris worms, which is a condition primarily seen in children. Piperazine hydrate and piperazine citrate are the main anthelminthic piperazines.Computed Properties of C16H18FN3O3

Carbon fiber coated by quinoa cellulose nanosheet with outstanding scaled salt self-cleaning performance and purification of organic and antibiotic contaminated water was written by Yang, Jie;Suo, Xidong;Zhao, Jingjing;Wang, Jing;Zhou, Runye;Zhang, Yu;Zhang, Yifei;Qiao, Hongtao;Luo, Xiaohang. And the article was included in Scientific Reports in 2022.Computed Properties of C16H18FN3O3 The following contents are mentioned in the article:

To date, various solar driven evaporation technologies have been developed for treatment of seawater and wastewater but with the threat from salt polluted and single treatment of seawater. Herein, we develop a multifunctional evaporator constructed by carbon fiber coated by quinoa cellulose nanosheet (CFQC) with outstanding self-cleaning performance and good purification property for treatment of organic and antibiotic polluted water. The resulting Zn-CFQC exhibits good light to thermal performance which can absorb about 86.95% lights in the range of UV-Vis-NIR (200-2500 nm); therefore, the wet and dry surface temperatures of Zn-CFQC are held at 62.1 and 124.3° C resp., and keep a speed of 3.2 kg m-2 h-1 for water evaporating under 1000 W m-2 illumination. Such good light-to-thermal capabilities can be mainly imputed to the unique surface microstructures of the carbon fiber which decorated by two-dimension cellulose and activated by ZnCl2. Addnl., Zn-CFQC shows good salt automatic-cleaning capability at night and corresponding mechanism has been simply elucidated according to the chem. potential theory. The method of treatment of carbon fiber opens a new way for com. carbon fiber utilization of solar assisted water purification This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Computed Properties of C16H18FN3O3).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine belongs to the family of medicines called anthelmintics. Piperazine is an anthelminthic especially useful in the treatment of partial intestinal obstruction caused by Ascaris worms, which is a condition primarily seen in children. Piperazine hydrate and piperazine citrate are the main anthelminthic piperazines.Computed Properties of C16H18FN3O3

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Zhang, Jiawei et al. published their research in Ecotoxicology and Environmental Safety in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. The piperazine scaffold is often found in biologically active compounds in different therapeutic areas. These therapeutic areas include antifungals, antidepressants, antivirals, and serotonin receptor (5-HT) antagonists/agonists. Piperazine and its salts did not induce point mutations in a bacterial test. A series of mutagenicity studies in cells, both in vitro and in vivo, has been completed and showed no evidence of mutagenic effect.Name: 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid

A tiered probabilistic approach to assess antibiotic ecological and resistance development risks in the fresh surface waters of China was written by Zhang, Jiawei;Ge, Hui;Shi, Jianghong;Tao, Huanyu;Li, Bin;Yu, Xiangyi;Zhang, Mengtao;Xu, Zonglin;Xiao, Ruijie;Li, Xiaoyan. And the article was included in Ecotoxicology and Environmental Safety in 2022.Name: 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid The following contents are mentioned in the article:

Exposure to antibiotics can result in not only ecotoxicity on aquatic organisms but also the development of antibiotic resistance. In the study, the ecotoxicity data and min. inhibitory concentrations of the antibiotics were screened to derive predicted no-effect concentrations of ecol. (PNECeco) and resistance development risks (PNECres) for 36 antibiotics in fresh surface waters of China. The derived PNECeco and PNECres values were ranged from 0.00175 to 2351μg/L and 0.037-50μg/L, resp. Antibiotic ecol. and resistance development risks were geog. widespread, especially in the Yongding River, Daqing River, and Ziya River basins of China. Based on the risk quotients, 11 and 14 of 36 target antibiotics were at high ecol. risks and high resistance development risks in at least one basin, resp. The higher tiered assessments provided more detailed risk descriptions by probability values and β-lactams (penicillin and amoxicillin) were present at the highest levels for ecol. and resistance development risks. Although there was uncertainty based on the limited data and existing methods, this study can indicate the overall situation of the existing risk levels and provide essential insights and data supporting antibiotic management. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Name: 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. The piperazine scaffold is often found in biologically active compounds in different therapeutic areas. These therapeutic areas include antifungals, antidepressants, antivirals, and serotonin receptor (5-HT) antagonists/agonists. Piperazine and its salts did not induce point mutations in a bacterial test. A series of mutagenicity studies in cells, both in vitro and in vivo, has been completed and showed no evidence of mutagenic effect.Name: 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Liu, Xinghao et al. published their research in Journal of Environmental Management in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Simple N-substituted piperazines have been found in many drug molecules. Piperazine is formed as a co-product in the ammoniation of 1,2-dichloroethane or ethanolamine. These are the only routes to the chemical used commercially.Quality Control of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid

Prediction of pharmaceutical and personal care products elimination during heterogeneous catalytic ozonation via chemical kinetic model was written by Liu, Xinghao;Yang, Zhaoguang;Zhu, Wenxiu;Yang, Ying;Li, Haipu. And the article was included in Journal of Environmental Management in 2022.Quality Control of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid The following contents are mentioned in the article:

Prediction of the removal of pollutants is important for the process design and optimization of wastewater treatment. In this study, the heterogeneous catalytic ozonation chem. kinetic model based on reaction kinetic constants between O3 (and •OH) and pollutants, and pseudo-first order rate constants for pollutant adsorption was established. The model parameters were obtained via O3 and p-chlorobenzonic acid decay curves, and adsorption kinetic experiments, resp. Higher •OH exposures were obtained at the expense of lower O3 exposures during catalytic ozonation compared to simple ozonation. Importantly, the exptl. measured and model-predicted removal ratios correlated well in all reaction systems, with correlation coefficients above 0.950 in synthetic solution and 0.893-0.979 in secondary effluent. Furthermore, the model revealed that pollutants were degraded mainly by O3 and/or •OH oxidation during catalytic ozonation, while adsorption of pollutants on catalysts contributed negligibly. Hence, the degradation ratios of pollutants could be satisfactorily predicted using the simplified model based only on the O3 and •OH exposures in the heterogeneous catalytic ozonation systems with low adsorption capacity catalysts. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Quality Control of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Simple N-substituted piperazines have been found in many drug molecules. Piperazine is formed as a co-product in the ammoniation of 1,2-dichloroethane or ethanolamine. These are the only routes to the chemical used commercially.Quality Control of 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Wu, Jingqi et al. published their research in Chemosphere in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. A form in which piperazine is commonly available industrially is as the hexahydrate, C4H10N2. 6H2O, which melts at 44 °C and boils at 125–130 °C. Two common salts in the form of which piperazine is usually prepared for pharmaceutical or veterinary purposes are the citrate, 3C4H10N2.2C6H8O7 (i.e. containing 3 molecules of piperazine to 2 molecules of citric acid), and the adipate, C4H10N2.C6H10O4 (containing 1 molecule each of piperazine and adipic acid).Reference of 70458-96-7

Norfloxacin adsorption and subsequent degradation on ball-milling tailored N-doped biochar was written by Wu, Jingqi;Wang, Tongshuai;Liu, Yuyan;Tang, Wei;Geng, Shuyu;Chen, Jiawei. And the article was included in Chemosphere in 2022.Reference of 70458-96-7 The following contents are mentioned in the article:

N-doping is an effective way to modify biochar for enhancing the adsorption capacity. The synthesis of N-doped biochar by the ball-milling method has been attractive due to its facile and eco-friendly approach with low energy consumption. However, the commonly used N-precursor NH3·H2O is environmentally harmful. It is needed to prepare safe and non-toxic N-doped biochar for large-scale production Here, a urea N-doped biochar (U-MBC) was prepared by the ball-milling method and used for norfloxacin (NOR) removal. The results showed that U-MBC exhibited almost 4-fold higher adsorption capacity for NOR than pristine biochar in a wide pH range (3-9). The adsorption enhancement was owing to the enhancement of H-bonds, π-π electron donor-acceptor, and pore-filling interactions due to the N-doping and ball-milling method. Addnl., 89% of adsorbed NOR can be further removed after 6 h milling. The regenerated U-MBC still had a good adsorption capacity (46.27 mg g-1) and performed well in three cycles. The knowledge gained from this study could encourage researchers to use urea or similar safe N-precursors with the ball-milling method for the large-scale production of N-doped biochar to remove antibiotic organic pollutants in the environment. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Reference of 70458-96-7).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. A form in which piperazine is commonly available industrially is as the hexahydrate, C4H10N2. 6H2O, which melts at 44 °C and boils at 125–130 °C. Two common salts in the form of which piperazine is usually prepared for pharmaceutical or veterinary purposes are the citrate, 3C4H10N2.2C6H8O7 (i.e. containing 3 molecules of piperazine to 2 molecules of citric acid), and the adipate, C4H10N2.C6H10O4 (containing 1 molecule each of piperazine and adipic acid).Reference of 70458-96-7

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Vavilapalli, Durga Sankar et al. published their research in Scientific Reports in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine causes primary dermal irritation and skin burns at high concentrations. Piperazine also causes eye irritation in humans. Outside the body, piperazine has a remarkable power to dissolve uric acid and producing a soluble urate, but in clinical experience it has not proved equally successful. Application of 70458-96-7

Enhanced photo-fenton and photoelectrochemical activities in nitrogen doped brownmillerite KBiFe2O5 was written by Vavilapalli, Durga Sankar;Behara, Santosh;Peri, Raja Gopal;Thomas, Tiju;Muthuraaman, B.;Rao, M. S. Ramachandra;Singh, Shubra. And the article was included in Scientific Reports in 2022.Application of 70458-96-7 The following contents are mentioned in the article:

Visible-light-driven photo-fenton-like catalytic activity and photoelectrochem. (PEC) performance of nitrogen-doped brownmillerite KBiFe2O5 (KBFO) are investigated. The effective optical bandgap of KBFO reduces from 1.67 to 1.60 eV post N-doping, enabling both enhancement of visible light absorption and photoactivity. The photo-fenton activity of KBFO and N-doped KBFO samples were analyzed by degrading effluents like Methylene Blue (MB), Bisphenol-A (BPA) and antibiotics such as Norfloxacin (NOX) and Doxycycline (DOX). 20 mmol of Nitrogen-doped KBFO (20N-KBFO) exhibits enhanced catalytic activity while degrading MB. 20N-KBFO sample is further tested for degradation of Bisphenol-A and antibiotics in the presence of H2O2 and chelating agent L-cysteine. Under optimum conditions, MB, BPA, and NOX, and DOX are degraded by 99.5% (0.042 min-1), 83% (0.016 min-1), 72% (0.011 min-1) and 95% (0.026 min-1) of its initial concentration resp. Photocurrent d. of 20N-KBFO improves to 8.83 mA/cm2 from 4.31 mA/cm2 for pure KBFO. Photocatalytic and photoelectrochem. (PEC) properties of N-doped KBFO make it a promising candidate for energy and environmental applications. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Application of 70458-96-7).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine causes primary dermal irritation and skin burns at high concentrations. Piperazine also causes eye irritation in humans. Outside the body, piperazine has a remarkable power to dissolve uric acid and producing a soluble urate, but in clinical experience it has not proved equally successful. Application of 70458-96-7

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Zhang, Xinyi et al. published their research in Journal of Colloid and Interface Science in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine was first introduced as an anthelmintic in 1953. Piperazine compounds mediate their anthelmintic action by generally paralyzing parasites, allowing the host body to easily remove or expel the invading organism. Although many piperazine derivatives occur naturally, piperazine itself can be synthesized by reacting alcoholic ammonia with 1,2-dichloroethane, by the action of sodium and ethylene glycol on ethylene diamine hydrochloride, or by reduction of pyrazine with sodium in ethanol.Name: 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid

Cobalt/calcium bimetallic oxides based on bio-waste eggshells for the efficient degradation of norfloxacin by peroxymonosulfate activation was written by Zhang, Xinyi;Yang, Zhiquan;Cui, Xiandi;Liu, Wanhui;Zou, Baosheng;Liao, Wenning. And the article was included in Journal of Colloid and Interface Science in 2022.Name: 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid The following contents are mentioned in the article:

Cobalt-calcium bimetallic oxide (ECCO) was successfully prepared using eggshells and cobalt nitrate, which could be used to activate peroxymonosulfate (PMS) to remove norfloxacin (NOR). The compositional structure and surface properties of the catalysts were explored by various characterization anal. The degradation efficiency of ECCO was 7.86 and 440 times higher than that of cobalt oxide and calcium oxide, resp. The prepared ECCO (0.1 g/L) had a high degradation efficiency of over 90% against NOR (10 mg/L, 100 mL) by activating the PMS (0.15 g/L) at a wide pH range of 3.0-9.0 in 35 min. With a NOR removal efficiency of 91.4% after five cycles, the catalyst showed good reusability. The high degradation efficiency of NOR was resulted from enhanced electron transfer capability, the low point of zero charge and diversified reactive oxygen species (ROS). The ROS were identified as SO4•-, •OH and 1O2, which were produced by activating PMS on the active sites of Co and oxygen vacancies. It is the first report of the use of eggshells to synthesize cobalt-calcium bimetallic oxides ECCO for the activation of PMS to eliminate NOR, which is important for the development of green and efficient catalysts. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Name: 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine was first introduced as an anthelmintic in 1953. Piperazine compounds mediate their anthelmintic action by generally paralyzing parasites, allowing the host body to easily remove or expel the invading organism. Although many piperazine derivatives occur naturally, piperazine itself can be synthesized by reacting alcoholic ammonia with 1,2-dichloroethane, by the action of sodium and ethylene glycol on ethylene diamine hydrochloride, or by reduction of pyrazine with sodium in ethanol.Name: 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Wang, Cong et al. published their research in Science of the Total Environment in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine was first introduced as an anthelmintic in 1953. Piperazine compounds mediate their anthelmintic action by generally paralyzing parasites, allowing the host body to easily remove or expel the invading organism. Piperazines are very broad chemical group, covering a wide range of drugs from antidepressants to antihistamines. The connecting property of all these chemicals is the presence of a piperazine functional group.Electric Literature of C16H18FN3O3

Contamination, transport, and ecological risks of pharmaceuticals and personal care products in a large irrigation region was written by Wang, Cong;Lu, Yonglong;Sun, Bin;Zhang, Meng;Wang, Rui;Li, Xiaoqian;Mao, Ruoyu;Cao, Zhiwei;Song, Shuai. And the article was included in Science of the Total Environment in 2022.Electric Literature of C16H18FN3O3 The following contents are mentioned in the article:

Pharmaceuticals and personal care products (PPCPs) have attracted widespread attention owing to their extensive use and potential adverse effects on human and ecosystem health. There is a lack of information regarding the occurrence and environmental fate of PPCPs in large agricultural irrigation areas in China. In this study, we conducted a comprehensive survey on 30 PPCPs in water from Hetao Irrigation District, one of the three largest irrigation areas in China. The ΣPPCP-concentrations ranged 82.13-1409.24 ng/L in August and 40.53-887.20 ng/L in Nov., with caffeine (CAF), norfloxacin (NOR), erythromycin (ERY), sulfamethoxazole (SMX) and ofloxacin (OFL) being the predominant compositions Spatially, the average ΣPPCP concentrations increased from irrigation to drainage water, and then decreased in Wuliangsuhai Lake. Less PPCP mass loading (55.05 kg/y) migrated from Wuliangsuhai Lake to Yellow River than that from the Yellow River to Hetao Irrigation District (425.88 kg/y), indicating that Wuliangsuhai Lake plays an important role in improving water quality. An ecol. risk assessment showed that it is worthwhile to consider the presence of CAF, ERY, NOR, and OFL in natural surface water and to control their potential risks. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Electric Literature of C16H18FN3O3).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Piperazine was first introduced as an anthelmintic in 1953. Piperazine compounds mediate their anthelmintic action by generally paralyzing parasites, allowing the host body to easily remove or expel the invading organism. Piperazines are very broad chemical group, covering a wide range of drugs from antidepressants to antihistamines. The connecting property of all these chemicals is the presence of a piperazine functional group.Electric Literature of C16H18FN3O3

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Zhu, Yingjie et al. published their research in Journal of Chromatography B in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Simple N-substituted piperazines have been found in many drug molecules. Although many piperazine derivatives occur naturally, piperazine itself can be synthesized by reacting alcoholic ammonia with 1,2-dichloroethane, by the action of sodium and ethylene glycol on ethylene diamine hydrochloride, or by reduction of pyrazine with sodium in ethanol.Name: 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid

Determination of quinolone antibiotics in environmental water using automatic solid-phase extraction and isotope dilution ultra-performance liquid chromatography tandem mass spectrometry was written by Zhu, Yingjie;He, Pengfei;Hu, Hongmei;Qi, Mengyu;Li, Tiejun;Zhang, Xiaoning;Guo, Yuanming;Wu, Wenyan;Lan, Qingping;Yang, Cancan;Jin, Hangbiao. And the article was included in Journal of Chromatography B in 2022.Name: 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid The following contents are mentioned in the article:

The widespread use of quinolones in humans and animals has become a major threat to public health. In this study, a simple, rapid, sensitive, and high throughput method based on automatic solid-phase extraction and isotope dilution ultra-performance liquid chromatog. tandem mass spectrometry was described for the determination of trace quinolones in environmental water. The proposed automated solid-phase extraction method was initially optimized, and the optimum exptl. conditions found were 1 L water sample with 0.5 g/L Na2EDTA (pH 3) extracted and enriched by CNW Poly-Sery HLB cartridge at a flow rate of 50 mL/min and eluted by 8 mL of methanol. The linearity of the method ranged from 0.05 to 100μg/L for 15 quinolones, with correlation coefficients ranging from 0.9993 to 0.9999. The limits of detection were in the low ng/L level, ranging from 0.005 to 0.051 ng/L. Finally, the optimized method was applied for determining trace levels of 15 quinolones in Wahaha pure water, tap water, river water, and seawater samples with good recoveries of 93%-119% and satisfactory relative standard deviations of 0.1%-13.9%. Fourteen quinolones were detected, and ofloxacin was the predominant congener in river water and seawater. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Name: 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Simple N-substituted piperazines have been found in many drug molecules. Although many piperazine derivatives occur naturally, piperazine itself can be synthesized by reacting alcoholic ammonia with 1,2-dichloroethane, by the action of sodium and ethylene glycol on ethylene diamine hydrochloride, or by reduction of pyrazine with sodium in ethanol.Name: 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Leus, Inga V. et al. published their research in Scientific Reports in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Simple N-substituted piperazines have been found in many drug molecules. Outside the body, piperazine has a remarkable power to dissolve uric acid and producing a soluble urate, but in clinical experience it has not proved equally successful. Category: piperazines

Property space mapping of Pseudomonas aeruginosa permeability to small molecules was written by Leus, Inga V.;Weeks, Jon W.;Bonifay, Vincent;Shen, Yue;Yang, Liang;Cooper, Connor J.;Nash, Dinesh;Duerfeldt, Adam S.;Smith, Jeremy C.;Parks, Jerry M.;Rybenkov, Valentin V.;Zgurskaya, Helen I.. And the article was included in Scientific Reports in 2022.Category: piperazines The following contents are mentioned in the article:

Two membrane cell envelopes act as selective permeability barriers in Gram-neg. bacteria, protecting cells against antibiotics and other small mols. Significant efforts are being directed toward understanding how small mols. permeate these barriers. In this study, we developed an approach to analyze the permeation of compounds into Gram-neg. bacteria and applied it to Pseudomonas aeruginosa, an important human pathogen notorious for resistance to multiple antibiotics. The approach uses mass spectrometric measurements of accumulation of a library of structurally diverse compounds in four isogenic strains of P. aeruginosa with varied permeability barriers. We further developed a machine learning algorithm that generates a deterministic classification model with minimal synonymity between the descriptors. This model predicted good permeators into P. aeruginosa with an accuracy of 89% and precision above 58%. The good permeators are broadly distributed in the property space and can be mapped to six distinct regions representing diverse chem. scaffolds. We posit that this approach can be used for more detailed mapping of the property space and for rational design of compounds with high Gram-neg. permeability. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7Category: piperazines).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. Simple N-substituted piperazines have been found in many drug molecules. Outside the body, piperazine has a remarkable power to dissolve uric acid and producing a soluble urate, but in clinical experience it has not proved equally successful. Category: piperazines

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Kaur, Tanvir et al. published their research in Archives of Microbiology in 2022 | CAS: 70458-96-7

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. A form in which piperazine is commonly available industrially is as the hexahydrate, C4H10N2. 6H2O, which melts at 44 °C and boils at 125–130 °C. Outside the body, piperazine has a remarkable power to dissolve uric acid and producing a soluble urate, but in clinical experience it has not proved equally successful. COA of Formula: C16H18FN3O3

Biosynthesis of zinc oxide nanoparticles via endophyte Trichodermaviride and evaluation of their antimicrobial and antioxidant properties was written by Kaur, Tanvir;Bala, Manju;Kumar, Gaurav;Vyas, Ashish. And the article was included in Archives of Microbiology in 2022.COA of Formula: C16H18FN3O3 The following contents are mentioned in the article:

The biogenic method for synthesis of nanoparticles is preferred over the traditional strategies, on account of its ease, environmental friendliness, and cost-effectivity, wherein fungi endorse themselves to be the most appropriate precursor for the same. In recent times numerous metal nanoparticles have been reported to exhibit significant therapeutic activities, out of which Zinc Oxide nanoparticles (ZnO NPs) stand apart on account of their multidimensional nature. Thus, this study was carried out with an aim to biosynthesize ZnO NPs utilizing endophyte Trichoderma viride, isolated from the seeds of Momordica charantia. The physicochem. characterization of NPs was done via employing a combination of spectroscopic and microscopic techniques. The NPs were found to have a hexagonal shape and possessed an average particle size of around 63.3 nm. The antimicrobial activity of NPs was evaluated against multi-drug resistant organisms and it was observed to be an appreciable one whereas the antioxidant activity was deduced to be dose-dependent. Thus, these ZnO NPs can be considered as a probable active ingredient of any future therapeutic conceptualization after undertaking a thorough toxicol. assessment. This study involved multiple reactions and reactants, such as 1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7COA of Formula: C16H18FN3O3).

1-Ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (cas: 70458-96-7) belongs to piperazine derivatives. A form in which piperazine is commonly available industrially is as the hexahydrate, C4H10N2. 6H2O, which melts at 44 °C and boils at 125–130 °C. Outside the body, piperazine has a remarkable power to dissolve uric acid and producing a soluble urate, but in clinical experience it has not proved equally successful. COA of Formula: C16H18FN3O3

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics